Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding light on Weyl fermions

29.10.2018

Researchers from the Theory Department of the Max Planck Institute for Structure and Dynamics (MPSD) in Hamburg and North Carolina State University in the US have demonstrated that the long-sought magnetic Weyl semi-metallic state can be induced by ultrafast laser pulses in a three-dimensional class of magnetic materials dubbed pyrochlore iridates. Their results, which have now been published in Nature Communications, could enable high-speed magneto-optical topological switching devices for next-generation electronics.

All known elementary particles can be sorted into two categories: bosons and fermions. Bosons carry forces, like the magnetic force or gravity, while fermions are the matter particles, like electrons. Theoretically it was predicted that fermions themselves can come in three species, named after the physicists Dirac, Weyl, and Majorana.


A wave of laser light hits the magnetic material, shaking the electron spins (arrows). This weakens magnetism and induces Weyl fermions in the laser-shaken material.

Jörg Harms, MPSD

Electrons in free space are Dirac fermions, but in solids they can change their nature. In the atomically thin carbon material graphene they become massless Dirac fermions. In other recently discovered and manufactured materials, they can also become Weyl and Majorana fermions, which makes such materials interesting for future technologies such as topological quantum computers and other novel electronic devices.

In combination with a wave of bosons, namely photons in a laser, fermions can be transformed from one type to another, as proposed by MPSD theorists in 2016 (see ref. 1) below). Now a new study led by PhD student Gabriel Topp in the Emmy Noether group of Michael Sentef suggests that electron spins can be manipulated by short light pulses to create a magnetic version of Weyl fermions from a magnetic insulator.

Based on a prior study led by MPSD postdoctoral researcher Nicolas Tancogne-Déjean and Theory Director Angel Rubio (see ref. 2 below), the scientists used the idea of laser-controlled electron-electron repulsion to suppress magnetism in a pyrochlore iridate material where electron spins are positioned on a lattice of tetrahedra.

On this lattice, electron spins, like little compass needles, point all-in to the center of the tetrahedron and all-out in the neighboring one. This all-in, all-out combination together with the length of the compass needles leads to insulating behavior in the material without light stimulation.

However, modern computer simulations on large computing clusters revealed that, when a short light pulse hits the material, the needles start to rotate in such a way that, on average, they look like shorter needles with less strong magnetic ordering. Done in just the right way, this reduction of magnetism leads to the material becoming semi-metallic with Weyl fermions emerging as the new carriers of electricity in it.

„This is a really nice step forward in learning how light can manipulate materials on ultrashort time scales,“ says Michael Sentef. And Gabriel Topp adds: „We were surprised by the fact that even a too strong laser pulse that should lead to a complete suppression of magnetism and a standard metal without Weyl fermions could lead to a Weyl state.

This is because on very short time scales the material does not have enough time to find a thermal equilibrium. When everything is shaking back and forth, it takes some time until the extra energy from the laser pulse is distributed evenly among all the particles in the material.“

The scientists are optimistic that their work will stimulate more theoretical and experimental work along these lines. „We are just at the beginning of learning to understand the many beautiful ways in which light and matter can combine to yield fantastic effects and we do not even know what they might be today,“ says Angel Rubio. „We are working very hard with a dedicated and highly motivated group of talented young scientists at the MPSD to explore these almost unlimited possibilities so that society will benefit from our discoveries.“

1) "Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials" - https://www.nature.com/articles/ncomms13940

2) "Ultrafast modification of Hubbard U in a strongly correlated material: ab initio high-harmonic generation in NiO" - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.097402

Wissenschaftliche Ansprechpartner:

Dr Michael Sentef: +49 (0)40 8998-88350

Originalpublikation:

http://www.nature.com/articles/s41467-018-06991-8

Weitere Informationen:

http://MPSD press release: http://www.mpsd.mpg.de/506762/2018-10-weyl-sentef

Jenny Witt | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Physics and Astronomy:

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht A special elemental magic
28.05.2020 | Kyoto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>