Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharpening the X-ray view of the nanocosm

23.03.2018

Novel lens enables microscopy with nanometer resolution

A novel lens offers scientists the sharpest X-ray images yet from the nano world. The device is made from alternating layers of tungsten carbide and silicon carbide and can focus hard X-rays into a spot of less than ten nanometers in diameter as a team lead by Saša Bajt from the German research center Deutsches Elektronen-Synchrotron DESY report in Light: Science and Applications, a journal of the Nature Publishing Group.


Two orthogonal lenses focus the X-ray beam into a small spot. The object under investigation (Acantharia, a marine plankton about 50 microns in diameter, with spikes showing nanostructured details) is placed close to the focus and a highly magnified holographic image is recorded with the detector. This measurement was made at P06 beamline, PETRA III, DESY, Germany.

Credit: Saša Bajt, Mauro Prasciolu, Holger Fleckenstein, Martin Domaracky, Henry N. Chapman, Andrew J. Morgan, Oleksandr Yefanov, Marc Messerschmidt, Yang Du, Kevin T. Murray, Valerio Mariani, Manuela Kuhn, Steve Aplin, Kanupriya Pande, Pablo Villanueva-Perez, Karolina Stachnik, Joe P. J. Chen, Andrzej Andrejczuk, Alke Meents, Anja Burkhardt, David Pennicard, Xiaojing Huang, Hanfei Yan, Evgeny Nazaretski, Yong S. Chu and Christian E. Hamm; Light: Science & Applications; DOI: 10.1038/lsa.2017.162

The short wavelength and the penetrating nature of X-rays are ideal for the microscopic investigation?of complex materials. For example, nanometer resolution X-ray images provide better understanding of structure and function of materials, which is critical for the development of new materials with improved properties.

This requires bright X-ray sources but also highly efficient and almost perfect x-ray optics. To acquire images, the X-rays must be focused : as in a light microscope. This is not easy as high energy X-rays penetrate most materials unimpeded and cannot be significantly manipulated with conventional lenses.

The multilayer Laue lens overcomes this problem. This device is basically a synthetic nanostructure that diffracts X-rays much like a crystal. If shaped the right way, the incident X-rays can all be concentrated in a very small focus.

The synthetic nanostructures are prepared by magnetron sputtering. We introduced a new pair of materials, tungsten carbide and silicon carbide, to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Equally important is the control of the layer thickness and shape with atom-scale precision, explains Bajt.

The sub-nanometer control of layer thickness gained through sputter deposition is considerably better than obtainable in a lithography process , a process used to prepare lithographic zone plates commonly used in x-ray microscopes operating at lower X-ray energies.

The high aspect ratio (smallest layer thickness vs. optical lens thickness) of the deposited layers makes for very efficient x-ray focusing, which is critical for fast imaging. The paper presents different characterization methods and ways to reduce remaining lens imperfections. The team is convinced that creating lenses approaching a single nanometer resolution is possible.

###

X-ray focusing with efficient high-NA multilayer Laue lenses; Saša Bajt, Mauro Prasciolu, Holger Fleckenstein, Martin Domaracky, Henry N. Chapman, Andrew J. Morgan, Oleksandr Yefanov, Marc Messerschmidt, Yang Du, Kevin T. Murray, Valerio Mariani, Manuela Kuhn, Steve Aplin, Kanupriya Pande, Pablo Villanueva-Perez, Karolina Stachnik, Joe P. J. Chen, Andrzej Andrejczuk, Alke Meents, Anja Burkhardt, David Pennicard, Xiaojing Huang, Hanfei Yan, Evgeny Nazaretski, Yong S. Chu and Christian E. Hamm; Light: Science & Applications; DOI: 10.1038/lsa.2017.162

Media Contact

Chenzi Guo
guocz@ciomp.ac.cn
86-043-186-176-851

http://www.ciomp.ac.cn/ 

Chenzi Guo | EurekAlert!

More articles from Physics and Astronomy:

nachricht JILA researchers make coldest quantum gas of molecules
22.02.2019 | National Institute of Standards and Technology (NIST)

nachricht (Re)solving the jet/cocoon riddle of a gravitational wave event
22.02.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>