Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharpening the X-ray view of the nanocosm

23.03.2018

Novel lens enables microscopy with nanometer resolution

A novel lens offers scientists the sharpest X-ray images yet from the nano world. The device is made from alternating layers of tungsten carbide and silicon carbide and can focus hard X-rays into a spot of less than ten nanometers in diameter as a team lead by Saša Bajt from the German research center Deutsches Elektronen-Synchrotron DESY report in Light: Science and Applications, a journal of the Nature Publishing Group.


Two orthogonal lenses focus the X-ray beam into a small spot. The object under investigation (Acantharia, a marine plankton about 50 microns in diameter, with spikes showing nanostructured details) is placed close to the focus and a highly magnified holographic image is recorded with the detector. This measurement was made at P06 beamline, PETRA III, DESY, Germany.

Credit: Saša Bajt, Mauro Prasciolu, Holger Fleckenstein, Martin Domaracky, Henry N. Chapman, Andrew J. Morgan, Oleksandr Yefanov, Marc Messerschmidt, Yang Du, Kevin T. Murray, Valerio Mariani, Manuela Kuhn, Steve Aplin, Kanupriya Pande, Pablo Villanueva-Perez, Karolina Stachnik, Joe P. J. Chen, Andrzej Andrejczuk, Alke Meents, Anja Burkhardt, David Pennicard, Xiaojing Huang, Hanfei Yan, Evgeny Nazaretski, Yong S. Chu and Christian E. Hamm; Light: Science & Applications; DOI: 10.1038/lsa.2017.162

The short wavelength and the penetrating nature of X-rays are ideal for the microscopic investigation?of complex materials. For example, nanometer resolution X-ray images provide better understanding of structure and function of materials, which is critical for the development of new materials with improved properties.

This requires bright X-ray sources but also highly efficient and almost perfect x-ray optics. To acquire images, the X-rays must be focused : as in a light microscope. This is not easy as high energy X-rays penetrate most materials unimpeded and cannot be significantly manipulated with conventional lenses.

The multilayer Laue lens overcomes this problem. This device is basically a synthetic nanostructure that diffracts X-rays much like a crystal. If shaped the right way, the incident X-rays can all be concentrated in a very small focus.

The synthetic nanostructures are prepared by magnetron sputtering. We introduced a new pair of materials, tungsten carbide and silicon carbide, to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Equally important is the control of the layer thickness and shape with atom-scale precision, explains Bajt.

The sub-nanometer control of layer thickness gained through sputter deposition is considerably better than obtainable in a lithography process , a process used to prepare lithographic zone plates commonly used in x-ray microscopes operating at lower X-ray energies.

The high aspect ratio (smallest layer thickness vs. optical lens thickness) of the deposited layers makes for very efficient x-ray focusing, which is critical for fast imaging. The paper presents different characterization methods and ways to reduce remaining lens imperfections. The team is convinced that creating lenses approaching a single nanometer resolution is possible.

###

X-ray focusing with efficient high-NA multilayer Laue lenses; Saša Bajt, Mauro Prasciolu, Holger Fleckenstein, Martin Domaracky, Henry N. Chapman, Andrew J. Morgan, Oleksandr Yefanov, Marc Messerschmidt, Yang Du, Kevin T. Murray, Valerio Mariani, Manuela Kuhn, Steve Aplin, Kanupriya Pande, Pablo Villanueva-Perez, Karolina Stachnik, Joe P. J. Chen, Andrzej Andrejczuk, Alke Meents, Anja Burkhardt, David Pennicard, Xiaojing Huang, Hanfei Yan, Evgeny Nazaretski, Yong S. Chu and Christian E. Hamm; Light: Science & Applications; DOI: 10.1038/lsa.2017.162

Media Contact

Chenzi Guo
guocz@ciomp.ac.cn
86-043-186-176-851

http://www.ciomp.ac.cn/ 

Chenzi Guo | EurekAlert!

More articles from Physics and Astronomy:

nachricht Scientists see energy gap modulations in a cuprate superconductor
02.04.2020 | DOE/Brookhaven National Laboratory

nachricht BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Scientists see energy gap modulations in a cuprate superconductor

02.04.2020 | Physics and Astronomy

AI finds 2D materials in the blink of an eye

02.04.2020 | Information Technology

New 3D cultured cells mimic the progress of NASH

02.04.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>