Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new type of magnet

07.02.2019

A team of scientists has discovered the first robust example of a new type of magnet--one that holds promise for enhancing the performance of data storage technologies.

This "singlet-based" magnet differs from conventional magnets, in which small magnetic constituents align with one another to create a strong magnetic field.


In a normal magnetic material, dense magnetic moments try to align with their neighbors (left). By contrast, in a singlet-based material, unstable magnetic moments pop in and out of existence, and stick to one another in aligned clumps (right).

Credit: Lin Miao, NYU's Department of Physics

Usage Restrictions: In conjunction with this paper only.

By contrast, the newly uncovered singlet-based magnet has fields that pop in and out of existence, resulting in an unstable force--but also one that potentially has more flexibility than conventional counterparts.

"There's a great deal of research these days into the use of magnets and magnetism to improve data storage technologies," explains Andrew Wray, an assistant professor of physics at New York University, who led the research team.

"Singlet-based magnets should have a more sudden transition between magnetic and non-magnetic phases. You don't need to do as much to get the material to flip between non-magnetic and strongly magnetic states, which could be beneficial for power consumption and switching speed inside a computer.

"There's also a big difference in how this kind of magnetism couples with electric currents. Electrons coming into the material interact very strongly with the unstable magnetic moments, rather than simply passing through. Therefore, it's possible that these characteristics can help with performance bottlenecks and allow better control of magnetically stored information."

The work, published in the journal Nature Communications, also included researchers from Lawrence Berkeley National Laboratory, the National Institute of Standards and Technology, the University of Maryland, Rutgers University, the Brookhaven National Laboratory, Binghamton University, and the Lawrence Livermore National Laboratory.

The idea for this type of magnet dates back to the 1960s, based on a theory that stood in sharp contrast to what had long been known about conventional magnets.

A typical magnet contains a host of tiny "magnetic moments" that are locked into alignment with other magnetic moments, all acting in unison to create a magnetic field. Exposing this assembly to heat will eliminate the magnetism; these little moments will remain--but they'll be pointing in random directions, no longer aligned.

A pioneering thought 50 years ago, by contrast, posited that a material that lacks magnetic moments might still be able to be a magnet. This sounds impossible, the scientists note, but it works because of a kind of temporary magnetic moment called a "spin exciton," which can appear when electrons collide with one another under the right conditions.

"A single spin exciton tends to disappear in short order, but when you have a lot of them, the theory suggested that they can stabilize each other and catalyze the appearance of even more spin excitons, in a kind of cascade," Wray explains.

In the Nature Communications research, the scientists sought to uncover this phenomenon. Several candidates had been found dating back to the 1970s, but all were difficult to study, with magnetism only stable at extremely low temperatures.

Using neutron scattering, X-ray scattering, and theoretical simulations, the researchers established a link between the behaviors of a far more robust magnet, USb2, and the theorized characteristics of singlet-based magnets.

"This material had been quite an enigma for the last couple of decades--the ways that magnetism and electricity talk to one another inside it were known to be bizarre and only begin to make sense with this new classification," remarks Lin Miao, an NYU postdoctoral fellow and the paper's first author.

Specifically, they found that USb2 holds the critical ingredients for this type of magnetism--particularly a quantum mechanical property called "Hundness" that governs how electrons generate magnetic moments. Hundness has recently been shown to be a crucial factor for a range of quantum mechanical properties, including superconductivity.

###

This research, which also included NYU doctoral candidates Yishuai Xu, Erica Kotta, and Haowei He, was supported by the MRSEC Program of the National Science Foundation (DMR-1420073).

Alternate media contact: Ashley White, Lawrence Berkeley National Laboratory: awhite@lbl.gov

James Devitt | EurekAlert!

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>