Saturn’s radio broadcasters mapped in 3-d for the first time

The results will be presented by Dr Baptist Cecconi, of LESIA, Observatoire de Paris, at the European Planetary Science Congress on Tuesday 23rd September.

The SKR radio emissions are generated by high-energy electrons spiralling around magnetic field lines threaded through Saturn’s auroras. Previous Cassini observations have shown that the SKR is closely correlated with the intensity of Saturn’s UV aurora and the pressure of the solar wind.

The measurements were made using Cassini’s Radio and Plasma Wave Science (RPWS) experiment.

“The animation shows radio sources clustered around curving magnetic field lines. Because the radio signals are beamed out from the source in a cone-shape, we can only detect the sources as Cassini flies through the cone. When Cassini flies at high altitudes over the ring planes, we see the sources clearly clustered around one or two field lines. However, at low latitudes we get more refraction and so the sources appear to be scattered,” said Dr Cecconi.

The model found that the active magnetic field lines could be traced back to near-polar latitudes degrees in both the northern and southern hemisphere. This matches well with the location of Saturn’s UV aurora.

“For the purposes of the model, we’ve imagined a screen that cuts through the middle of Saturn, set up at right-angles to the line between Cassini and the centre of the planet. We’ve mapped the footprints of the radio sources projected onto the screen, which tilts as Cassini moves along its orbital path and its orientation with respect to Saturn changes. We’ve also traced the footprints of the magnetic field lines back to the cloud tops of Saturn,” said Dr Cecconi.

Although there were some minor differences between emissions in the northern and southern hemispheres, the emissions were strongest in the western part of Saturn’s sunlit hemisphere. This area corresponds to a region of Saturn’s magnetopause where electrons are thought to be accelerated by the interaction of the solar wind and Saturn’s magnetic field.

The observations were made over a 24-hour period during Cassini’s flyby of Saturn on 25-26th September 2006. This flyby was chosen because Cassini would approach from the southern hemisphere and swoop out from the northern hemisphere, allowing the instruments to take measurements from about 30 degrees below to about 30 degrees above the equatorial plane.

Media Contact

Anita Heward alfa

More Information:

http://www.europlanet-eu.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors