Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite shows regional variation in warming from sun during solar cycle

15.11.2007
A NASA satellite designed, built and controlled by the University of Colorado at Boulder is expected to help scientists resolve wide-ranging predictions about the coming solar cycle peak in 2012 and its influence on Earth's warming climate, according to the chief scientist on the project.

Senior Research Associate Tom Woods of CU-Boulder's Laboratory for Atmospheric and Space Physics said the brightening of the sun as it approaches its next solar cycle maximum will have regional climatic impacts on Earth. While some scientists predict the next solar cycle -- expected to start in 2008 -- will be significantly weaker than the present one, others are forecasting an increase of up to 40 percent in the sun's activity, said Woods.

Woods is the principal investigator on NASA's $88 million Solar Radiation and Climate Experiment, or SORCE, mission, launched in 2003 to study how and why variations in the sun affect Earth's atmosphere and climate. In August, NASA extended the SORCE mission through 2012. The extension provides roughly $18 million to LASP, which controls SORCE from campus by uploading commands and downloading data three times daily to the Space Technology Building in the CU Research Park.

Solar cycles, which span an average of 11 years, are driven by the amount and size of sunspots present on the sun's surface, which modulate brightness from the X-ray to infrared portion of the electromagnetic spectrum. The current solar cycle peaked in 2002.

Solar activity alters interactions between Earth's surface and its atmosphere, which drive global circulation patterns, said Woods. While warming on Earth from increased solar brightness is modest compared to the natural effects of volcanic eruptions, cyclical weather patterns like El Nino or human emissions of greenhouse gases, regional temperature changes can vary by a factor of eight.

During the most recent solar maximum, for example, the global mean temperature rise on Earth due to solar-brightness increases was only about 0.2 degrees Fahrenheit, said Woods. But parts of the central United States warmed by 0.7 degrees F, and a region off the coast of California even cooled slightly. A paper on the coming decade of solar activity by Woods and Judith Lean of the Naval Research Laboratory in Washington, D.C., was published online Oct. 30 in the scientific newsletter, Eos.

"It was very important to the climate change community that SORCE was extended, because it allows us to continue charting the solar irradiance record in a number of wavelengths without interruption," Woods said. "Even relatively small changes in solar output can significantly affect Earth because of the amplifying affect in how the atmosphere responds to solar changes."

With mounting concern over the alteration of Earth's surface and atmosphere by humans, it is increasingly important to understand natural "forcings" on the sun-Earth system that impact both climate and space weather, said Woods. Such natural forcing includes heat from the sun's radiation that causes saltwater and freshwater evaporation and drives Earth's water cycle.

Increases in UV radiation from the sun also heat up the stratosphere -- located from 10 miles to 30 miles above Earth -- which can cause significant changes in atmospheric circulation patterns over the planet, affecting Earth's weather and climate, he said. "We will never fully understand the human impact on Earth and its atmosphere unless we first establish the natural effects of solar variability."

SORCE also is helping scientists better understand violent space weather episodes triggered by solar flares and coronal mass ejections that affect the upper atmosphere and are more prevalent in solar maximum and declining solar cycle phases, said Woods. The severe "Halloween Storms" in October and November 2003 disrupted GPS navigation and communications, causing extensive and costly rerouting of commercial "over-the-poles" jet flights to lower latitudes, he said.

Woods also is the principal investigator on a $30 million instrument known as the Extreme Ultraviolet Variability Experiment, or EVE, one of three solar instruments slated for launch on NASA's Solar Dynamic Observatory in December 2008. Designed and built at LASP and delivered to NASA's Goddard Space Flight Center in Maryland last September, EVE will measure precise changes in the sun's UV brightness, providing space weather forecasters with early warnings of potential communications and navigation outages.

About one-third of the annual SORCE budget goes for commanding and controlling the satellite, roughly one-third for producing public data sets and one-third for analyzing how and why the sun is changing, he said. "CU-Boulder students are our lifeblood," said Woods. "They are involved in all aspects of the SORCE mission, from uploading commands to the spacecraft to analyzing data."

Tom Woods | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht Newfound Martian aurora actually the most common; sheds light on Mars' changing climate
13.12.2019 | NASA/Goddard Space Flight Center

nachricht Hubble watches interstellar comet Borisov speed past the sun
13.12.2019 | ESA/Hubble Information Centre

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

Tracking lab-grown tissue with light

13.12.2019 | Medical Engineering

Newfound Martian aurora actually the most common; sheds light on Mars' changing climate

13.12.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>