Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics provides new insights on cataract formation

13.11.2007
Using the tools and techniques of soft condensed matter physics, a research team in Switzerland has demonstrated that a finely tuned balance of attractions between proteins keeps the lens of the eye transparent, and that even a small change in this balance can cause proteins to aggregate and de-mix.

This leads to cataract formation, the world’s leading cause of blindness. This work could shed light on other protein aggregation diseases (such as Alzheimer’s disease), and may one day lead to methods for stabilizing protein interactions and thus preventing these problematic aggregations from occurring.

The eye lens is made up of densely packed crystallin proteins, arranged in such a way that light in the visible wavelength range can pass through. But for a variety of reasons including UV radiation exposure and age, the proteins sometimes change their behavior and clump together. As a result, light is scattered once it enters the lens, resulting in cloudy vision or blindness. There is currently no known way to reverse the protein aggregation process once it has begun. Nearly 5 million people every year undergo cataract surgery in which their lenses are removed and replaced with artificial ones.

Previous research has shown that the interactions between the three major crystallin proteins that make up the concentrated eye lens protein solution are key to cataract formation. A team of scientists from the University of Fribourg, EPFL and the Rochester Institute of Technology (USA) studied the interactions between two of these proteins, at concentrations similar to those found in the eye lens, using a combination of neutron scattering experiments and molecular dynamics computer simulations. They found that a finely tuned combination of attraction and repulsion between the two proteins resulted in an arrangement that was transparent to visible light. “By combining experiments and simulations it became possible to quantify that there had to be a weak attraction between the proteins in order for the eye lens to be transparent,” explains EPFL postdoctoral researcher Giuseppe Foffi, a member of the Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA). “Our results indicate that cataracts may form if this balance of attractions is disrupted, and this opens a new direction for research into cataract formation.”

“Lots of studies have been done on individual proteins in the lens,” adds University of Fribourg physicist and lead author Anna Stradner, “But none on their mixtures at concentrations typically found in the eye. We modeled these proteins as colloidal particles, and found there was a very narrow window in which the protein solution remained stable, and this was a necessary condition for lens transparency.”

In addition to unveiling important new information about the interactions of the proteins in the eye lens, this benchmark study provides a framework for further study into the molecular properties and interactions of proteins. The results suggest that these properties could perhaps be manipulated to prevent aggregation or reverse the aggregation process once it has begun.

Mary Parlange | EurekAlert!
Further information:
http://www.epfl.ch
http://www.unifr.ch/physics/mm/

More articles from Physics and Astronomy:

nachricht Astrophysicists measure precise rotation pattern of sun-like stars for the first time
21.09.2018 | NYU Abu Dhabi

nachricht Halfway mark for NOEMA, the super-telescope under construction
20.09.2018 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>