Physics provides new insights on cataract formation

This leads to cataract formation, the world’s leading cause of blindness. This work could shed light on other protein aggregation diseases (such as Alzheimer’s disease), and may one day lead to methods for stabilizing protein interactions and thus preventing these problematic aggregations from occurring.

The eye lens is made up of densely packed crystallin proteins, arranged in such a way that light in the visible wavelength range can pass through. But for a variety of reasons including UV radiation exposure and age, the proteins sometimes change their behavior and clump together. As a result, light is scattered once it enters the lens, resulting in cloudy vision or blindness. There is currently no known way to reverse the protein aggregation process once it has begun. Nearly 5 million people every year undergo cataract surgery in which their lenses are removed and replaced with artificial ones.

Previous research has shown that the interactions between the three major crystallin proteins that make up the concentrated eye lens protein solution are key to cataract formation. A team of scientists from the University of Fribourg, EPFL and the Rochester Institute of Technology (USA) studied the interactions between two of these proteins, at concentrations similar to those found in the eye lens, using a combination of neutron scattering experiments and molecular dynamics computer simulations. They found that a finely tuned combination of attraction and repulsion between the two proteins resulted in an arrangement that was transparent to visible light. “By combining experiments and simulations it became possible to quantify that there had to be a weak attraction between the proteins in order for the eye lens to be transparent,” explains EPFL postdoctoral researcher Giuseppe Foffi, a member of the Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA). “Our results indicate that cataracts may form if this balance of attractions is disrupted, and this opens a new direction for research into cataract formation.”

“Lots of studies have been done on individual proteins in the lens,” adds University of Fribourg physicist and lead author Anna Stradner, “But none on their mixtures at concentrations typically found in the eye. We modeled these proteins as colloidal particles, and found there was a very narrow window in which the protein solution remained stable, and this was a necessary condition for lens transparency.”

In addition to unveiling important new information about the interactions of the proteins in the eye lens, this benchmark study provides a framework for further study into the molecular properties and interactions of proteins. The results suggest that these properties could perhaps be manipulated to prevent aggregation or reverse the aggregation process once it has begun.

Media Contact

Mary Parlange EurekAlert!

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Grow faster, die sooner: How growth rates influence the fitness of bacteria

“The fitness of bacteria is more complex than expected,” explains Ulrich Gerland, professor for the theory of complex biosystems at the Technical University of…

Spintronics: Researchers show how to make non-magnetic materials magnetic

In solid-state physics, oxide layers only a few nanometres thick are known to form a so-called two-dimensional electron gas. These thin layers, separated from…

Caterpillars of the wax moth love eating plastic: Fraunhofer LBF investigates degradation process

Within the Framework of a research project on the chemical imaging analysis of plastic digestion in caterpillars (RauPE), a team from Fraunhofer LBF used…