Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chameleon particles from the Sun

22.04.2002


The Sun emits electron-neutrinos, elementary particles of matter that have no electric charge and very little mass, created in vast numbers by the thermonuclear reactions that fuel our parent star. Since the early 1970s, several experiments have detected neutrinos arriving on Earth, but they have found only a fraction of the number expected from detailed theories of energy production in the Sun. This meant there was either something wrong with our theories of the Sun, or our understanding of neutrinos. It turns out that our theories of how the Sun is powered look like being correct according to a team of scientists from the UK, the US and Canada whose latest results from research into solar neutrinos were announced on Saturday [20 April 2002]. What`s more, these ghostly particles have `chameleon` type capabilities, changing from one type of neutrino into another on their journey from the Sun to Earth.



The scientists used data taken entirely from the Sudbury Neutrino Observatory [SNO] in Canada which shows without doubt that the number of observed solar neutrinos is only a fraction of the total emitted from the Sun - clear evidence that they have chameleon type properties and change type en-route to Earth.

Says Project Director Art McDonald of Queen`s University, Canada, "These new results show in a clear, simple and accurate way that solar neutrinos change their type. The total number of neutrinos we observe is in excellent agreement with calculations of the nuclear reactions powering the Sun. The SNO team is really excited because these measurements enable neutrino properties to be defined with much greater certainty in fundamental theories of elementary particles."


Neutrinos are known to exist in three types related to three different charged particles - the electron, and its lesser known relatives the muon and the tau. The Sun emits electron neutrinos, which are created in the thermonuclear reactions in the solar core. Previous experiments have found fewer electron neutrinos than suggested by calculations based on how the Sun burns - the famous "solar neutrino problem".


The results announced on Saturday at the Joint American Physical Society/American Astronomical Society meetings in Albuquerque, New Mexico, show that the number of electron-neutrinos detected is about 1/3 of the number expected according to calculations based on the latest sophisticated models of the solar core. The SNO detector uses the unique properties of heavy water - where the hydrogen has an extra neutron in its nucleus - to detect not only electron neutrinos through one type of reaction, but also all three known neutrino types through a different reaction. The total number of all three types of neutrino agrees well with the calculations. This shows unambiguously that electron neutrinos emitted by the Sun have changed to muon or tau neutrinos before they reach Earth.

Dr. Andre Hamer, of Los Alamos National Laboratory, said, "In order to make these measurements we had to restrict the radioactivity in the detector to minute levels and determine both neutrino signals and the detector background very accurately - to show clearly that we are observing neutrinos from the Sun. The care taken throughout this experiment to minimise radioactivity, and the careful calibration and analysis of our data, has enabled us to make these neutrino measurements with great accuracy"

In June last year results from the detection of electron neutrinos at SNO first indicated, with a certainty of 99.9%, that neutrinos change type on their way from the Sun, thus solving the long-standing problem - or so it was thought. However, these conclusions were based on comparisons of the SNO results with those from a different experiment, the Super-Kamiokande detector, located in Japan.

Prof. Dave Wark of the University of Sussex and the Rutherford Appleton Laboratory, Oxford, commented, " Whenever a scientific conclusion relies on two experiments, and on the theory connecting them, it is twice as hard to be certain that you understand what is going on. We are therefore much more certain now that we have really shown that solar neutrinos change type".

The latest results, entirely from the SNO detector, (and which have been submitted to Physical Review Letters) are 99.999% accurate, and are of great importance because of the way in which physicists think that the neutrinos - long thought to be massless particles - change types only happens if the different types have different masses.

Gill Ormrod | alphagalileo

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>