Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chameleon particles from the Sun

22.04.2002


The Sun emits electron-neutrinos, elementary particles of matter that have no electric charge and very little mass, created in vast numbers by the thermonuclear reactions that fuel our parent star. Since the early 1970s, several experiments have detected neutrinos arriving on Earth, but they have found only a fraction of the number expected from detailed theories of energy production in the Sun. This meant there was either something wrong with our theories of the Sun, or our understanding of neutrinos. It turns out that our theories of how the Sun is powered look like being correct according to a team of scientists from the UK, the US and Canada whose latest results from research into solar neutrinos were announced on Saturday [20 April 2002]. What`s more, these ghostly particles have `chameleon` type capabilities, changing from one type of neutrino into another on their journey from the Sun to Earth.



The scientists used data taken entirely from the Sudbury Neutrino Observatory [SNO] in Canada which shows without doubt that the number of observed solar neutrinos is only a fraction of the total emitted from the Sun - clear evidence that they have chameleon type properties and change type en-route to Earth.

Says Project Director Art McDonald of Queen`s University, Canada, "These new results show in a clear, simple and accurate way that solar neutrinos change their type. The total number of neutrinos we observe is in excellent agreement with calculations of the nuclear reactions powering the Sun. The SNO team is really excited because these measurements enable neutrino properties to be defined with much greater certainty in fundamental theories of elementary particles."


Neutrinos are known to exist in three types related to three different charged particles - the electron, and its lesser known relatives the muon and the tau. The Sun emits electron neutrinos, which are created in the thermonuclear reactions in the solar core. Previous experiments have found fewer electron neutrinos than suggested by calculations based on how the Sun burns - the famous "solar neutrino problem".


The results announced on Saturday at the Joint American Physical Society/American Astronomical Society meetings in Albuquerque, New Mexico, show that the number of electron-neutrinos detected is about 1/3 of the number expected according to calculations based on the latest sophisticated models of the solar core. The SNO detector uses the unique properties of heavy water - where the hydrogen has an extra neutron in its nucleus - to detect not only electron neutrinos through one type of reaction, but also all three known neutrino types through a different reaction. The total number of all three types of neutrino agrees well with the calculations. This shows unambiguously that electron neutrinos emitted by the Sun have changed to muon or tau neutrinos before they reach Earth.

Dr. Andre Hamer, of Los Alamos National Laboratory, said, "In order to make these measurements we had to restrict the radioactivity in the detector to minute levels and determine both neutrino signals and the detector background very accurately - to show clearly that we are observing neutrinos from the Sun. The care taken throughout this experiment to minimise radioactivity, and the careful calibration and analysis of our data, has enabled us to make these neutrino measurements with great accuracy"

In June last year results from the detection of electron neutrinos at SNO first indicated, with a certainty of 99.9%, that neutrinos change type on their way from the Sun, thus solving the long-standing problem - or so it was thought. However, these conclusions were based on comparisons of the SNO results with those from a different experiment, the Super-Kamiokande detector, located in Japan.

Prof. Dave Wark of the University of Sussex and the Rutherford Appleton Laboratory, Oxford, commented, " Whenever a scientific conclusion relies on two experiments, and on the theory connecting them, it is twice as hard to be certain that you understand what is going on. We are therefore much more certain now that we have really shown that solar neutrinos change type".

The latest results, entirely from the SNO detector, (and which have been submitted to Physical Review Letters) are 99.999% accurate, and are of great importance because of the way in which physicists think that the neutrinos - long thought to be massless particles - change types only happens if the different types have different masses.

Gill Ormrod | alphagalileo

More articles from Physics and Astronomy:

nachricht Creating switchable plasmons in plastics
10.12.2019 | Linköping University

nachricht Ultrafast stimulated emission microscopy of single nanocrystals in Science
10.12.2019 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

City research draws on Formula 1 technology for the construction of skyscrapers

10.12.2019 | Architecture and Construction

Reorganizing a computer chip: Transistors can now both process and store information

10.12.2019 | Information Technology

Could dark carbon be hiding the true scale of ocean 'dead zones'?

10.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>