Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sheet of carbon atoms acts like a billiard table

18.09.2007
UC-Riverside research shows graphene, a thin sheet of carbon atoms, has good potential to supplement or replace silicon as an electronic material

A game of billiards may never get smaller than this.

Physicists at UC Riverside have demonstrated that graphene – a one-atom thick sheet of carbon atoms arranged in hexagonal rings – can act as an atomic-scale billiard table, with electric charges acting as billiard balls.

The finding underscores graphene’s potential for serving as an excellent electronic material, such as silicon, that can be used to develop new kinds of transistors based on quantum physics. Because they encounter no obstacles, the electrons in graphene roam freely across the sheet of carbon, conducting electric charge with extremely low resistance.

Study results appear in today’s issue of Science.

The research team, led by Chun Ning (Jeanie) Lau, found that the electrons in graphene are reflected back by the only obstacle they meet: graphene’s boundaries.

“These electrons meet no other obstacles and behave like quantum billiard balls,” said Lau, an assistant professor who joined UCR’s Department of Physics and Astronomy in 2004. “They display properties that resemble both particles and waves.”

Lau observed that when the electrons are reflected from one of the boundaries of graphene, the original and reflected components of the electron can interfere with each other, the way outgoing ripples in a pond might interfere with ripples reflected back from the banks.

Her lab detected the “electronic interference” by measuring graphene’s electrical conductivity at extremely low (0.26 Kelvin) temperatures. She explained that at such low temperatures the quantum properties of electrons can be studied more easily.

“We found that the electrons in graphene can display wave-like properties, which could lead to interesting applications such as ballistic transistors, which is a new type of transistor, as well as resonant cavities for electrons,” Lau said. She explained that a resonant cavity is a chamber, like a kitchen microwave, in which waves can bounce back and forth.

In their experiments, Lau and her colleagues first peeled off a single sheet of graphene from graphite, a layered structure consisting of rings of six carbon atoms arranged in stacked horizontal sheets. Next, the researchers attached nanoscale electrodes to the graphene sheet, which they then refrigerated in a cooling device. Finally, they measured the electrical conductivity of the graphene sheet.

Graphene, first isolated experimentally less than three years ago, is a two-dimensional honeycomb lattice of carbon atoms, and, structurally, is related to carbon nanotubes (tiny hollow tubes formed by rolling up sheets of graphene) and buckyballs (hollow carbon molecules that form a closed cage).

Scientifically, it has become a new model system for condensed-matter physics, the branch of physics that deals with the physical properties of solid materials. Graphene enables table-top experimental tests of a number of phenomena in physics involving quantum mechanics and relativity.

Bearing excellent material properties, such as high current-carrying capacity and thermal conductivity, graphene ideally is suited for creating components for semiconductor circuits and computers. Its planar geometry allows the fabrication of electronic devices and the tailoring of a variety of electrical properties. Because it is only one-atom thick, it can potentially be used to make ultra-small devices and further miniaturize electronics.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>