Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State astronomer helps discover planet that offers clues to Earth's future

14.09.2007
An international team of astronomers that includes Steve Kawaler of Iowa State University has announced the first discovery of a planet orbiting a star near the end of its life.

The announcement, culminating seven years of research, will be published in the Sept. 13 issue of the journal Nature.

The news provides a preliminary picture of what could be the Earth's destiny in four to five billion years. That's when the sun will exhaust its hydrogen fuel, expand enormously as a red giant and expel its outer layers in an explosive helium flash.

The planet discovered by the researchers, "V 391 Pegasi b," has survived all those changes to its sun.

The international research team was led by Roberto Silvotti from the INAF-Osservatorio Astronomico di Capodimonte in Naples, Italy. They discovered the planet orbiting "V 391 Pegasi," a faint star in the constellation of Pegasus.

"The exciting thing about finding a planet around this star is that it indicates that planetary systems can survive the giant phase and the helium flash of their parent star," said Kawaler, an Iowa State professor of physics and astronomy. "It bodes well for the survival of our own Earth in the distant future. Before V 391 Pegasi lost its outer regions at the helium flash, the planet orbited the star at about the same distance that the Earth orbits our sun."

But, Kawaler said, "We shouldn't take too much heart in this -- this planet is larger than Jupiter, so a smaller planet like the Earth could still be vulnerable."

Kawaler helped the 23-member research team make its discovery by coordinating observations during a 2003 run of the Whole Earth Telescope. Iowa State is a lead institution in the Whole Earth Telescope, a worldwide network of cooperating observatories that allow astronomers to take uninterrupted measurements of variable stars that change in brightness. The discovery of V 391 Pegasi b was made by detailed measurements of the clocklike variation of the star caused by the planet tugging on it.

Kawaler also advanced the project by doing theoretical calculations to make sure irregularities of the star's orbital motion were caused by the orbiting planet.

The astronomers found that at the present time, V 391 Pegasi b has an orbital distance 1.7 times the medium distance between the Earth and the sun. As stars age and reach their red giant phase, they undergo an enormous expansion (with their volume increasing by a factor of millions) that can easily reach and engulf their inner planets.

"The same will happen to the sun," Silvotti said. "As far as our planets are concerned, we expect Mercury and Venus to disappear in the sun's envelope, whereas Mars should survive. The fate of the Earth is less clear because its position is really at the limit: it appears more likely that the Earth will not survive the red giant expansion of the sun either, but it is not for sure."

As is the case for almost all planets beyond our solar system, V 391 Pegasi b cannot be seen directly. Silvotti said it took seven years of observations and calculations to confirm the existence of the planet.

Steve Kawaler | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>