Large Binocular Telescope shows That Hercules Is Odd, Flat Dwarf Galaxy

The Hercules Dwarf is a companion galaxy to our own Milky Way, but has only one ten-millionth as many stars. It was among several dwarf galaxies discovered earlier this year by the Sloan Digital Sky Survey.

Now astronomers using the LBT have discovered that this tiny galaxy, which is 430,000 light years away, is flat rather than round. Spiral galaxies, including our Milky Way, are flat because they rotate around their galactic centers. But dwarf galaxies don't rotate this way. They are more spherical.

The Hercules Dwarf Galaxy is the first flat dwarf galaxy astronomers have found among millions of well-studied dwarf galaxies.

“The Hercules Dwarf Galaxy is either unlike any of the millions of dwarf galaxies studied so far, or (else) it circles our Galaxy on an extremely plunging orbit,” Matthew Coleman of the Max Planck Institute for Astronomy, Germany, said.

If the Hercules Dwarf revolves in some wildly eccentric orbit with the Milky Way, our big galaxy's gravity may have pulled Hercules' stars into a squashed, cigar-shaped disk when they were near the Milky Way's galactic core, Coleman said. The Milky Way has “tidally stretched” the Sagittarius Dwarf Galaxy this way. The Milky Way's gravity pulls more strongly on one side of Sagittarius than the other, stretching it out into a stream of stars. But Sagittarius is 10 times closer to the Milky Way's center than the Hercules Dwarf Galaxy is.

Whether Hercules was somehow tidally stretched in the past or if it's flat for some other as yet unknown reason, Coleman said, the Hercules Dwarf is “an exceptional, unparalleled object.”

Coleman and his team will publish their results in the Astrophysical Journal Letters,

LBT Director Richard Green called the result an exciting milestone: ³This is the first paper in the astronomical literature to be based on data from LBT, the very first official scientific result from a new state-of-the-art telescope.²

The Large Binocular Telescope Observatory is at 3,190 meters, or more than 10,000 feet, on Mount Graham in southeastern Arizona. The world's single largest optical/infrared telescope, the Large Binocular Telescope features two 8.4-meter mirrors on a single mount. The project's Italian partners have developed an optical “blue” camera now operating at prime focus on one of the mirrors, and they are completing another optical “red” camera soon to be installed at prime focus on the other mirror.

The astronomers used LBT's high-tech blue Large Binocular Camera to take new images of the Hercules Dwarf with 10 times more sensitivity than the Sloan Digital Sky Survey did. The Large Binocular Camera and telescope work together like a giant digital camera that takes images of ultra-faint objects with a field of view the size of the full moon.

The LBT team acquired all their published data on the Hercules Dwarf in relatively short exposure times for a total 80 minutes, University of Arizona astronomy Professor Jill Bechtold said. Much more sensitive observations are possible with the LBT, Bechtold noted. She is a co-author on the paper.

Emanuele Giallongo of INAF/Rome, who built the camera, said, “I am delighted to see that the new camera is delivering such exciting images to the astronomy community.”

“We provided early 'science demonstration' time to our astronomers so that they could show what can be done with this new facility,” Green said. “This result is just the first, with many more to come.”

Combined light from the LBT's two giant mirrors is equivalent to an 11.8 meter, or approximately 39-foot, mirror. Combined light from the two mirrors and state-of-the-art adaptive optics will give the telescope the resolution of a 22.8-meter, or approximately 75-foot telescope.

Future high-tech instruments that will be used with the LBT include spectrographs of varying resolution and spectral sensitivity, and complex devices that will combine the light path of the two giant mirrors. U.S., German and Italian institutions are partners in the $120 million LBT Observatory. The University of Arizona in Tucson is a partner in the LBT Corp. on behalf of the Arizona university system.

The LBT is an international collaboration among institutions in the United States, Italy and Germany. The LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system, Istituto Nazionale di Astrofisica in Italy, the LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University, the Ohio State University, and the Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia.

Media Contact Information:
Klaus Jager Max Planck Institute for Astronomy + 49-62221 528 379 Matt Smith, LBT Corp. 520-321-1111

For more information and images for download, Visit the LBTO Web site,

Download high-resolution image of the LBT on Mount Graham: s/2006/12/061211a.j.JPG

Media Contact

Lori Stiles University of Arizona

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

SETI Institute launches groundbreaking technosignature science and technology

Application deadline for grants is July 15, 2024. The SETI Institute is announcing the launch of a pioneering grants program dedicated to advancing technosignature science. This first-of-its-kind initiative aims to…

Gaining a better understanding of brittle bone disease

– without animal experiments. For someone suffering from brittle bone disease, life is fraught with complications. The slightest misstep, a seemingly harmless fall or even one false move can be…

Antarctica’s strongest ice melt phases of the past

…as a gauge of the coming sea level rise. Ice-Ocean Interactions: The History Book of West Antarctica’s Climate. Of all the polar regions, the West Antarctic Ice Sheet is the…

Partners & Sponsors