Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling the physics of DNA's double helix

13.07.2007
Researchers at Duke University's Pratt School of Engineering have uncovered a missing link in scientists' understanding of the physical forces that give DNA its famous double helix shape.

"The stability of DNA is so fundamental to life that it's important to understand all factors," said Piotr Marszalek, a professor of mechanical engineering and materials sciences at Duke. "If you want to create accurate models of DNA to study its interaction with proteins or drugs, for example, you need to understand the basic physics of the molecule. For that, you need solid measurements of the forces that stabilize DNA."

In a study published online by Physical Review Letters on July 5, Marszalek's team reports the first direct measurements of the forces within single strands of DNA that wind around each other in pairs to form the complete, double-stranded molecules. The work was supported by the National Science Foundation and the National Institutes of Health.

Each DNA strand includes a sugar and phosphate "backbone" attached to one of four bases, which encode genetic sequences. The strength of the interactions within individual strands comes largely from the chemical attraction between the stacked bases. But the integrity of double-stranded DNA depends on both the stacking forces between base units along the length of the double helix and on the pairing forces between complementary bases, which form the rungs of the twisted ladder.

Earlier studies have focused more attention on the chemical bonds between opposing bases, measuring their strength by "unzipping" the molecules' two strands, Marszalek said. Studies of intact DNA make it difficult for researchers to separate the stacking from the pairing forces.

To get around that problem in the new study, the Duke team used an atomic force microscope (AFM) to capture the "mechanical fingerprint" of the attraction between bases within DNA strands. The bonds within the molecules' sugar and phosphate backbones remained intact and therefore had only a minor influence on the force measurements, Marszalek said.

They tugged on individual strands that were tethered at one end to gold and measured the changes in force as they pulled. The AFM technique allows precise measurements of forces within individual molecules down to one pico-Newton--a trillionth of a Newton. For a sense of scale, the force of gravity on a two-liter bottle of soda is about 20 Newtons, Marszalek noted.

They captured the range of stacking forces by measuring two types of synthetic DNA strands: some made up only of the base thymine, which is known to have the weakest attraction between stacked units, and some made up only of the base adenine, known to have the strongest stacking forces. Because of those differences in chemical forces, the two types of single-stranded DNA take on different structures, Marszalek said. Single strands of adenine coil in a fairly regular fashion to form a helix of their own, while thymine chains take on a more random shape.

The pure adenine strands exhibited an even more complex form of elasticity than had been anticipated, the researchers reported. As they stretched the adenine chains with increasing force, the researchers noted two places—at 23 and 113 pico-Newtons--where their measurements leveled off.

"Those plateaus reflect the breaking and unfolding of the helix," Marszalek explained. With no bonds between bases to break, the thymine chains' showed little resistance to extension and no plateau.

Based on the known structure of the single stranded DNA molecules, they had expected to see only one such plateau as the stacking forces severed. Exactly what happens at the molecular level at each of the two plateaus will be the subject of continued investigation, he said.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>