Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of R Coronae Borealis and other helium stars solved

25.03.2002


Astronomers Dr Simon Jeffery of the Armagh Observatory and Dr Hideyuki Saio of Tohoku University, Japan, have finally solved a long-standing mystery concerning the creation of two particular kinds of rare stars. They have found that a class of variable stars named after their prototype R Coronae Borealis (RCrB), and a related group called `extreme helium stars` are the products of mergers between pairs of white dwarf stars. What kind of star results from the merger depends on the composition of the white dwarfs. The research is to be published in the Monthly Notices of the Royal Astronomical Society.



RCrB stars and their hotter cousins, the extreme helium stars, are highly unusual. While most ordinary stars are typically three-quarters hydrogen (by weight), these oddities have hardly any hydrogen on their surfaces. Instead, they are made primarily of helium, with some carbon, traces of hydrogen and other peculiarities. For some time, astronomers have suspected that they are the mixed-up remains from inside old stars, where nuclear fusion has created helium, carbon and other chemical elements. The question has been, how did it happen?

The problem has haunted Simon Jeffery for much of his career. He began studying extreme helium stars about 20 years ago, and his collaboration with Hideyuki Saio started in 1985. A breakthrough came when Jeffery realised that the helium stars are giving out more energy than they produce inside them by nuclear processes. That meant they must be shrinking. Observations he made of four helium stars with the orbiting International Ultraviolet Explorer (IUE) observatory demonstrated that they were getting hotter by 30120 degrees per year. And observations of some pulsating helium stars showed that they are 90% the mass of the Sun.


Saio, an expert on computer modelling, developed the simulations of stellar mergers needed to convince other astronomers that two white dwarfs coming together could explain the observations. It was a difficult job. Conventional thinking said that if you added hydrogen from one white dwarf to another, it would either just be blown away or there would be a supernova explosion. But what would happen if you added helium?

White dwarfs are the cores left over when old, evolved stars blow off their outer layers. They are by no means all the same and their compositions cover a bewildering range. A simulated merger between two helium white dwarfs produced a star matching very closely the properties of a nitrogen-rich helium star called V652 Herculis. A merger between a carbon-oxygen white dwarf and a helium white dwarf matched the shrinking helium stars Jeffery had observed with IUE and explained very well the properties of RCrB stars and extreme helium stars.

"There are still some unanswered questions, though" says Jeffery. "The actual merger, when one white dwarf is ripped apart by its companion, is
likely to be extremely violent, taking a matter of a few minutes. We don`t yet know how the material will be spread out - into a big disk around the star perhaps - or what happens as the new helium star expands by a factor of 10,000".

Dr Simon Jeffery | alphagalileo
Further information:
http://www.arm.ac.uk/~csj/movies/merger.mpg

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>