Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel low temperature laser processing of silicon for hybrid organic/inorganic solar cells

31.05.2007
Researchers at the Advanced Technology Institute (ATI) at the University of Surrey have reported a new technique to UV laser processing of thin film silicon for applications such as display control circuits and solar cells, which could lead to device performances at lower costs.

The improvements are achieved with a new pulse profile for crystallisation of amorphous silicon to nanocrystalline as reported in the April issue of Applied Physics Letters (90, 171912). Lead investigator Dr Damitha Adikaari comments: “The use of a modified laser pulse shape results in more efficient transformation of amorphous silicon into its crystalline form, with significant control of surface roughness allowing for higher degree of control of design parameters.”

The enhanced understanding of effects of the pulse profile on the texture of silicon films has allowed the investigators to fabricate efficient organic/inorganic hybrid solar cells, with the highest reported efficiency for nanocrystalline silicon and the type of polymer used (MEH-PPV). (Applied Physics letters, 90, 203514) Dr Adikaari further states that “the cells were initially fabricated to help us understand nanocrystalline inorganic/organic interfaces, made with laser textured nanocrystalline silicon and spin-cast MEH-PPV. However, they result in impressive photocurrents, where the bulk of the photo-generation is believed to be from the nanocrystalline silicon layer."

The laser texturing of amorphous silicon has also been used to prove another concept to increase the surface area of organic photovoltaics while keeping the device thickness to a minimum. In a subsequent article to be published in Applied Physics Letters, the researchers report nano-imprinted organic cells with a laser textured stamp. The lead investigator Mr Nanditha Dissanayake states “the imprinting process results in a five-fold increase in photo-current, purely due to the surface area increase which increases the collection efficiency of the photo-generated carriers.”

The Director of the ATI, Professor Ravi Silva, who also heads the Nano Electronics Centre where the work was carried out, comments: “The fundamental understanding we have gained in nano-texturing of amorphous silicon has led ATI researchers to improve charge extraction of organic/inorganic hybrid devices, which is giving rise to some exciting device physics. These nano-engineered devices promise a lot of potential for large scale organic/inorganic photovoltaics.”

Stuart Miller | alfa
Further information:
http://portal.surrey.ac.uk/portal/page?_pageid=799,1523106&_dad=portal&_schema=PORTAL

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>