Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where has all the antimatter gone? VELO seeks the answer

12.04.2007
Scientists from the Universities of Liverpool and Glasgow have completed work on the inner heart of an experiment which seeks to find out what has happened to all the antimatter created at the start of the Universe. Matter and antimatter were created in equal amounts in the Big Bang but somehow the antimatter disappeared resulting in the Universe, and everything in it, including ourselves, being made of the remaining matter.

The final modules of the VErtex LOcator (VELO), a precision silicon detector, have been delivered to CERN, the European Particle Physics Laboratory in Geneva. Once assembled VELO will be installed into the LHCb detector, one of four experiments, which make up the Large Hadron Collider (LHC) particle accelerator, which is due to be switched on in November this year.

LHCb is designed to investigate the subtle differences between matter and antimatter in particles containing b (beauty) quarks. The VELO is an essential part of the experiment which will provide the unprecedented precision necessary to isolate them. The LHC, located in a 27km underground tunnel which straddles France and Switzerland, will help answer some of the fundamental questions about the origins of our Universe and is set to change the future path of particle physics research.

Within the LHC, two beams of protons will be accelerated to close to the speed of light and then collided in one of the four experiments, which will each measure the outfall of particles.

Professor Themis Bowcock, lead scientist from the University of Liverpool LHCb team said, “The VELO gives us the precision we need not only to identify b quarks in a proton-proton collision, but to do so in real time. This allows us to isolate samples of b quarks for analysis in a way that would be impossible otherwise. It is the key to LHCb’s physics aims.”

The VELO is unique in its design with the whole device (about a metre long) consisting of 42 silicon "modules", spread along both sides of the proton beam (21 each side). The VELO actually sits inside a vacuum vessel - with a thin sheet of aluminium, know as RF foil, separating it from the primary vacuum inhabited by the proton beams. The two halves of modules are mechanically moved in to within 7mm of the beam during data-taking, and out to a safe distance afterwards.

Dr Tara Shears, LHCb scientist from the University of Liverpool explains, “To achieve optimal precision the silicon detectors need to be as close as possible to the beam. When operational 40 million proton proton interactions will occur per second inside LHCb and it is no mean feat that measurements of these collisions will take place in real time.

Like all the detector experiments at CERN a worldwide team of scientists are involved in the design and construction of LHCb. The experiment involves 663 scientists from 47 institutes and universities in 15 countries. UK collaborators make up around 20% of this. The individual VELO modules, of which there are 42 in total, were designed and assembled at the University of Liverpool in a state of the art clean room.

Transport of the completed VELO modules from the University of Liverpool occurred by less than traditional means. Each module being couriered via an easyJet flight to Geneva! However, with the onset of tighter baggage restrictions some of the modules made the 1,066 km (663 mile) journey in the boot of a car.

Scientists from the University of Glasgow are responsible for the reception and testing of the modules at CERN. Dr Chris Parkes from University of Glasgow said, “Now that all 42 modules are on site we are busy testing before final installation in the detector, 100 metres underground.

Contacts
Gill Ormrod – Science and Technology Facilities Press Office
Tel: 01793 442012. Email: gill.ormrod@stfc.ac.uk
Kate Spark – University of Liverpool Press Office
Tel: 0151 794 2247
Email: kate.spark@liv.ac.uk
Martin Shannon - University of Glasgow Press Office
Tel: 0141 330 8593
Email: m.shannon@admin.gla.ac.uk
UK Science Contacts
Professor Themis Bowcock – Lead LHCb scientist at the University of Liverpool
Tel: 0151 794 3315
Email: tjvb@hep.ph.liv.ac.uk
Dr Tara Shears – LHCb scientist, University of Liverpool
Tel: 0151 7943315
Email: tara@hep.ph.liv.ac.uk
Dr Chris Parkes – LHCb scientist, University of Glasgow
Tel: 0141 330 5885
Email: parkes@mail.cern.ch

Gill Ormrod | alfa
Further information:
http://www.cern.ch
http://www.lhc.ac.uk
http://hep.ph.liv.ac.uk/~tara/lhcb_outreach/

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>