Neutron probe yields break in superconductor mystery

The advance is the result of investigative work done at the National Institute of Standards and Technology's Center for Neutron Research (NCNR), and at the National High Magnetic Field Laboratory (NHMFL) at Florida State University (FSU).

Stray magnetic fields suppress superconductivity, the resistance-free passage of electric current. But the object of the team's scrutiny—a uranium-ruthenium-silicon compound (URu2Si2)—somehow accommodates the normal adversity between magnetism and superconductivity. At 17.5 degrees above absolute zero, once-nomadic electrons that had roamed freely about the compound's lattice-like atomic structure—and generated their own magnetic fields—behave in a more orderly and cooperative fashion. This coherence sets the stage for superconductivity.

URu2Si2 belongs to a class of materials called heavy fermions, known to be reluctant superconductors. This is because current-carrying electrons in the intermetallic material interact with surrounding particles and truly gain from the experience. The association adds mass—making the electrons behave as though they were a few hundred times more massive than “normal.” The heavy electrons once were thought to make superconductivity impossible.

However, numerous heavy fermion superconductors now are known, and URu2Si2 ranks among the most curious of the lot.

Unexplained was how a “hidden order” suddenly arose in the wake of the magnetic instabilities caused by the roving electrons, each one spinning and producing its own miniature magnetic field. With neutron probes, researchers managed to track electron movements and determined that the wandering particles work out an unexpected accommodation in the spacing of their energy levels.

Media Contact

Mark Bello EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors