Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three-dimensional polymer with unusual magnetism

14.11.2006
Up to now it has not been possible to fabricate magnets from organic materials, like for example plastics. Recently, however, experiments at the Forschungszentrum Dresden-Rossendorf in collaboration with an international research team have revealed magnetic order in a polymer.

The structure which consists in particular of hydrogen, fluorine, carbon and copper, has been realized in an entirely novel, three-dimensional and very stable form. This will be described in an upcoming issue of the journal "Chemical Communications".

Magnetism is a physical property of matter related to the magnetic spins of electrons. Iron, for example, is a ferromagnet because these spins are aligned parallel to each other, generating a uniform magnetic field. Antiferromagnetism, on the other hand, arises when neighboring spins are oriented antiparallel to each other.

Such antiferromagnetism has been shown to exist for the new polymeric compound studied at the Forschungszentrum Dresden-Rossendorf (FZD). This polymer is characterized by a novel and unusual structure where copper atoms together with pyrazin-molecules build layers, which in turn through bridges of hydrogen and fluorine are connected with each other. The three-dimensional polymer was prepared by chemists working with Jamie Manson at Eastern Washington University and was subsequently studied by physics teams in Great Britain and in the research center in Dresden-Rossendorf.

Metallic copper is not magnetic. Joachim Wosnitza and his colleagues at the Dresden High Magnetic Field Laboratory discovered at a temperature of 1.54 Kelvin – that is 1.54 degrees above absolute zero at -273.15 °C – that the embedded copper atoms order themselves antiferromagnetically. In the compound, every copper ion possesses a magnetic spin which interacts with neighboring spins through organic units. How this interaction arises and how it can be influenced is presently under investigation.

Additional polymeric samples from the laboratory of Manson will be studied at the Forschungszentrum Dresden-Rossendorf with the objective of a better understanding of the newly discovered magnetism for this class of polymers. In the future, this would be a significant step, to synthesize organic materials with tailored magnetic properties. Permanent magnets can be made from iron and other ferromagnetic materials, from polymers this is, according to the current knowledge, not possible. The great vision of the scientists is to realize ferromagnetic properties for novel polymeric compounds that eventually would permit the development of innovative magnets.

Christine Bohnet | alfa
Further information:
http://www.rsc.org/

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>