Nano-signals get a boost from magnetic spin waves

Groups of nanoscale magnetic oscillators are known to synchronize their individual 10-nanowatt signals to achieve a signal strength equal to the square of the number of devices. Now scientists at the National Institute of Standards and Technology (NIST), Seagate Research Center (Pittsburgh, Pa.) and Hitachi Global Storage Technologies (San Jose, Calif.) have discovered how–the oscillators accomplish this feat by communicating by means of “spin waves,” their magnetic emissions caused by oscillating patterns in the spin of electrons.

The discovery, reported in the Aug. 25 issue of Physical Review Letters, provides a tool for designing “spintronic” devices, which are based on the spin of electrons instead of their charge as in conventional electronics. The NIST oscillators–nanoscale electrical contacts applied to sandwiches of two magnetic films separated by a non-magnetic layer of copper–are hundreds of times smaller than typical commercial microwave generators and potentially could replace much bulkier and expensive components.

The NIST team previously reported “locking” the signals of two oscillators [www.nist.gov/public_affairs/releases/nanooscillators.htm] but were not sure why this occurred. They suspected spin waves, which propagate through solid magnetic materials, or magnetic fields, which propagate through air or a vacuum. So they did an experiment by making two oscillators on the same slab of magnetic multilayer, locking their signals, and then cutting a gap in the solid material between the two devices. The locking stopped.

Lead author Matthew Pufall of NIST compares spin wave locking to dropping two rocks in different sides of a pool of water, so that ripples propagate outward from each spot until they meet and merge. Each oscillator shifts the frequency of its own spin waves to match that of the incoming wave; this “frequency pulling” gets stronger as the frequencies get closer together, until they lock. Each oscillator also adjusts the peaks and troughs of its wave pattern to the incoming wave, until the two sets of waves synchronize.

Media Contact

Laura Ost EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors