Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pigment formulated 225 years ago could be key in emerging technologies

04.08.2006
Imagine turning on your computer and not having to wait for it to load the operating system, virus protection, firewalls and other programs. Imagine that random access memory is accessible immediately, like turning on room lights.

That could be the reality of future devices that allow electrons to be manipulated by their magnetic properties as well as by their electrical charge. The ability to manipulate electrons' magnetism, in addition to controlling their charge flow, has the potential to create broad new capabilities for computers and other devices and is the basis for an emerging technology called "spintronics." A major barrier to creating such devices is finding nonvolatile magnetic semiconductor materials, ones that don't demagnetize easily. So far the only materials found that meet the requirements operate only at a decidedly uncomfortable 200 degrees below zero Celsius, about minus 328 Fahrenheit.

But now researchers at the University of Washington have demonstrated a material – a mixture of zinc oxide and cobalt first formulated in 1780 as a pigment called cobalt green – that appears capable of operating in more suitable environments and would allow electrons to be manipulated both electrically and magnetically.

"The big challenge is to develop materials that can perform these kinds of functions not just at cryogenic temperatures but at practical temperatures," said Daniel Gamelin, a UW assistant professor of chemistry. "The breakthrough with the materials we tested is that they exhibit their magnetic properties at room temperature."

Silicon-based semiconductors that incorporate many tiny transistors are at the heart of computers and an array of other devices. But while silicon chips allow complex manipulation of electrons based on their charges, current chip technology is not useful for manipulating the electrons' magnetism, or spin.

It is believed the simplest way to manipulate an electron's magnetic state in a semiconductor device is by using a semiconductor material such as silicon or zinc oxide that incorporates magnetic elements. Previous research has suggested that some such magnetic semiconductors could operate at room temperature, but there has been strong debate about whether the results actually support that conclusion.

To test cobalt green, researchers at the Pacific Northwest National Laboratory in Richland, Wash., processed zinc oxide, a semiconductor with a simple chemical structure, so a small number of zinc ions were replaced with cobalt ions, which are magnetic. Then, in Gamelin's UW lab, the cobalt ions were aligned – making the material magnetic – by exposure to zinc metal vapor, which introduces extra electrons to the zinc oxide. The magnetic properties remained strong at room temperature even when the vapor exposure ended. When the cobalt-doped zinc oxide was heated in air, the researchers observed the extra electrons dissipate and the magnetic properties disappear, in a way that demonstrated the two are interdependent.

"This work shows there is a real effect here, and there is promise for these materials," Gamelin said. "The next step is to try to get these materials to interface with silicon semiconductors."

The bright bluish-green mixture of zinc oxide and cobalt, called cobalt green or Rinman's green, was first devised as an art pigment in the 19th century by Swedish chemist Sven Rinman. The low concentration of magnetic cobalt ions made it a good candidate for testing as a spintronics material, Gamelin said.

He is corresponding author of a paper describing the work, published in the July 21 Physical Review Letters. Co-authors are Kevin Kittilstved and Dana Schwartz, UW chemistry doctoral students, and Allan Tuan, Steve Heald and Scott Chambers of the Pacific Northwest lab. The work was funded by the National Science Foundation, the Research Corp., the Dreyfus Foundation, the Sloan Foundation and the U.S. Department of Energy.

Because development of these materials is in the early stages, it is not yet clear what their final properties will be, and their final properties will determine how they can be used, Gamelin said. But eventually such materials could have profound impact on computers and digital devices, from the way they are used to their power requirements.

"For instance, the general sense is that you will use a lot less power in these devices, so you will need a lot less cooling capacity," he said. "That would be a major advance."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>