Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence for Ultra-Energetic Particles in Jet from Black Hole

21.06.2006
An international team of astronomers, led by Dr Sebastian Jester from the University of Southampton, has obtained key X-ray observations that reveal the nature of quasar particle jets which originate just outside super-massive black holes at the centre of galaxies and radiate across the spectrum from radio to X-ray wavelengths. A complementary study of jet infrared emission, led by astronomers at Yale University, reaches the same conclusion.

Both studies involve the jet of the quasar 3C273, famous since its identification in 1963 as the first quasar. It now appears that the most energetic radiation from this jet arises through direct radiation from extremely energetic particles, and not in the way expected by most astronomers based on the previously available data. The two reports, available now online in the Astrophysical Journal, will appear in print in the September 10 issue.

"Quasar jets attain nearly the speed of light and emit infrared-visible light and X-rays. But the jets have been too distant and faint to collect sufficient data to decide the nature of the emission until now," said Sebastian Jester, working at the University of Southampton with funding from an Otto Hahn fellowship from Germany's Max Planck Society, the leader of one study and a co-author on the other. "These data are a significant advance in what we know about jets, and the results clearly suggest ultra-energetic particles are emitting synchrotron radiation in 3C273."

There have been two competing theories of how X-ray emission arises from the particles - the "Inverse-Compton" theory proposing that the emissions occur when jet particles scatter cosmic microwave background photons, and the "Synchrotron Radiation" theory postulating a separate population of extremely energetic electrons or protons that cause the high-energy emission.

Dr Jester led a team of collaborators at MIT and the Smithsonian Astrophysical Observatory (SAO) in Cambridge, MA, and at the Max Planck Institute for Astronomy in Heidelberg, to observe the 3C273 jet with the Chandra X-ray Observatory. Their more detailed Chandra data allowed the first in-depth study of the energy distribution of the X-rays from the jet, which supported the synchrotron theory.

In a complementary study, a team led by Dr Yasunobu Uchiyama, former postdoctoral fellow at the Yale Center for Astronomy, observed the 3C273 jet with the Spitzer Space Telescope, "because it is located in space and is more sensitive to faint infrared jet emission than any previous telescope," said Uchiyama. Spitzer observations enabled the team, with collaborators at Stanford, the University of Southampton, Goddard Space Flight Center, and the Brera Observatory in Milan, to determine the infrared spectrum for the first time and thus to deduce the origin of the radio through X-ray emission.

Both teams also used data from the third of NASA's Great Observatories, the Hubble Space Telescope, and the radio telescopes of the Very Large Array (VLA). The three space telescopes and the VLA "see" emission of different wavelengths from celestial objects, and the combination is essential to reveal a new comprehensive perspective on the jets.

"The new multiwavelength data clearly show the emission at radio, infrared, optical and X-ray wavelengths is linked," said C. Megan Urry, Israel Munson Professor of Physics and Astronomy at Yale, and an author on the Uchiyama study. "This strongly suggests that ultra-energetic particles in the 3C273 jet are producing all their light via synchrotron radiation."

According to the researchers, while the lifetime of the X-ray producing particles is only about 100 years, the data indicate that the visibly brightest part of the jet has a length of about 100,000 light years. Since there would be insufficient time for the particles to shoot out from the black hole at close to the speed of light and then release their energy as radiation as far out as they are seen, the particles have to be accelerated locally, where they produce their emission.

"Our results call for a radical rethink of the physics of relativistic jets that black holes drive," said Uchiyama. "But we now have a crucial new clue to solving one of the major mysteries in high-energy astrophysics." Sebastian Jester adds: "The new observations show that the flow structure of this jet is more complicated than had been assumed previously. That the present evidence favors the synchrotron model deepens the mystery of how jets produce the ultra-energetic particles that radiate at X-ray wavelengths. Fermilab, CERN and DESY would be jealous!"

Other authors on the Uchiyama paper include Jeffrey Van Duyne and Paolo Coppi from Yale; C.C. Cheung, Stanford University; Rita Sambruna, NASA/GSFC, Greenbelt, MD; Tadayuki Takahashi, ISAS/JAXA, Japan; and Laura Maraschi and Fabrizio Tavecchio, Osservatorio Astronomico di Brera, Milan. Other authors on the Jester paper include Dan Harris from the Smithsonian Astrophysical Observatory (SAO), Herman Marshall from the MIT Kavli Institute for Astrophysics and Space Research; and Klaus Meisenheimer, Max Planck Institute for Astronomy in Heidelberg. Grant and contract funding from NASA supported the research.

Sarah Watts | alfa

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>