Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe scores new planetary success: Venus Express enters orbit around the Hothouse Planet

12.04.2006


Yesterday, at the end of a 153-day and 400-million km cruise into the inner Solar System beginning with its launch on 9 November 2005, ESA’s Venus Express space probe fired its main engine at 09:17 CEST for a 50-minute burn, which brought it into orbit around Venus.



With this firing, the probe reduced its relative velocity toward the planet from 29,000 to about 25,000 km/h and was captured by its gravity field. This orbit insertion manoeuvre was a complete success.

During the next four weeks, the Venus Express probe will perform a series of manoeuvres to reach the scheduled operational orbit for its scientific mission. It will move from its current highly elongated 9-day orbit to a 24-hour polar orbit, culminating at 66,000 kilometres. From this vantage point, the orbiter will conduct an in-depth observation of the structure, chemistry and dynamics of the atmosphere of Venus for at least two Venusian days (486 Earth days).


Enigmatic atmosphere

From previous missions to Venus as well as observations directly from Earth, we already know that our neighbouring planet is shrouded in a thick atmosphere where extremes of temperature and pressure conditions are common. This atmosphere creates a greenhouse effect of tremendous proportions as it spins around the planet in four days in an unexplained ’super-rotation’ phenomenon.

The mission of Venus Express will be to carry out a detailed characterisation of this atmosphere, using state-of-the-art sensors in order to answer the questions and solve the mysteries left behind by the first wave of explorers. It will also be the first Venus orbiter to conduct optical observations of the surface through ’visibility windows’ discovered in the infrared spectrum.

The commissioning of the onboard scientific instruments will begin shortly and the first raw data are expected within days. The overall science payload is planned to be fully operational within two months.

Europe explores the Solar System

With this latest success, ESA is adding another celestial body to its range of Solar System studies. ESA also operates Mars Express around Mars, SMART-1 around the Moon and is NASA’s partner on the Cassini orbiter around Saturn. In addition, ESA is also operating the Rosetta probe en route to comet 67P/Churyumov-Gerasimenko. It should reach its target and become the first spacecraft ever to enter orbit around a comet nucleus by 2014. Meanwhile, ESA also plans to complete the survey of our celestial neighbours with the launch of the BepiColombo mission to Mercury in 2013.

“With the arrival of Venus Express, ESA is the only space agency to have science operations under way around four planets: Venus, the Moon, Mars and Saturn” underlines Professor David Southwood, the Director of ESA’s science programmes. “We are really proud to deliver such a capability to the international science community.”

“To better understand our own planet, we need to explore other worlds in particular those with an atmosphere,” said Jean-Jacques Dordain, ESA Director General. “We’ve been on Titan and we already are around Mars. By observing Venus and its complex atmospheric system, we will be able to better understand the mechanisms that steers the evolution of a large planetary atmosphere and the change of climates. In the end, it will help us to get better models of what is actually going on in our own atmosphere, for the benefit of all Earth citizens.”

State-of-the-art science package

Venus Express was developed for ESA by a European industrial team led by EADS Astrium incorporating 25 main contractors from 14 European countries. Its design is derived from that of its highly successful predecessor, Mars Express, and its payload accommodates seven instruments including upgraded versions of three instruments developed for Mars Express and two for Rosetta.

The PFS spectrometer will determine the temperature and composition profile of the atmosphere at very high resolution. It will also monitor the surface temperature and search for hot spots from possible volcanic activity. The UV/infrared SpicaV/SOIR spectrometer and the VeRa radioscience experiment will probe the atmosphere by observing the occultation of distant starts or the fading of radio signals on the planetary limb. SpicaV/SOIR will be particularly looking for traces of water molecules, molecular oxygen and sulphur compounds, which are suspected to exist in the atmosphere of Venus. The Virtis spectrometer will map the different layers of the atmosphere and provide imagery of the cloud systems at multiple wavelengths to characterise the atmospheric dynamics.

On the outer edge of the atmosphere, the Aspera instrument and a magnetometer will investigate the interaction with the solar wind and plasma it generates in an open environment without the protection of a magnetosphere like the one we have around Earth.

The VMC wide-angle multi-channel camera will provide imagery in four wavelengths, including one of the ’infrared windows’ which will make imaging of the surface possible through the cloud layer. It will provide global images and will assist in the identification of phenomena detected by the other instruments.

ESA media relations office | alfa
Further information:
http://www.esa.int/SPECIALS/Venus_Express/SEM2GQNFGLE_0.html

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>