Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uneven surfaces conserve fuel

23.02.2006


Tiny regular bumps on a surface, such as the wing of an airplane, can substantially reduce total air resistance, and thereby the consumption of fuel. Wind tunnel tests at the Royal Institute of Technology (KTH) in Stockholm, Sweden, show that small cylindrical bumps on a surface delay the transition from laminar flow (well-ordered) to turbulent (chaotic) when air flows over a surface­-a crucial factor in total air resistance.



If this finding, made by an international research team at KTH, holds up in tests outside the laboratory, huge savings may be in store for the aviation industry.

Many other technological applications may see major yet simple cost reductions and save energy as a result of reduced air resistance. The findings are being published in the prestigious journal Physical Review Letters and are making waves around the world.


“The discovery is revolutionary for physicists working with fluid mechanics, since it goes against the conventional thinking that an uneven surface could only speed up the transition to turbulence,” says Jens Fransson, one of the scientists in the research group.

A further benefit the newly discovered method might offer is that it is passive­-it requires no more input than properly placed bumps on the surface to prevent unnecessary turbulence. Many earlier methods for reducing total air resistance have involved the elimination of turbulence that has already occurred.

In wind tunnel experiments at the Department of Mechanics at KTH, the scientists have created velocity variations against the direction of the flow by placing tiny cylindrical elements on a surface. This hampers the occurrence of instabilities and delays the transition of laminar flow to turbulence.

Plasma physics, laser technology, and magnetohydrodynamics are further examples of fields where the underlying physical mechanism should be of interest.

Other participating scientists: Prof. Alessandro Talamelli, Il Facoltà di Ingegneria, Universitetà di Bologna, Italy; Luca Brandt, Ph.D., KTH Mechanics, Stockholm; Assoc. Prof. Carlo Cossu, LadHyX, CNRS École Polytechnique, France.

Magnus Myrén | alfa
Further information:
http://www.kth.se

More articles from Physics and Astronomy:

nachricht New method gives microscope a boost in resolution
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A new 'spin' on kagome lattices
10.12.2018 | Boston College

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>