Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next Generation Light Source

24.11.2005


The Technische Universität Dresden (TU Dresden) partakes in one of the world’s largest projects on the development of innovative organic light-emitting diodes (OLEDs). Scientists at the Institute of Applied Photophysics have been developing highly efficient white organic light-emitting diodes which could perhaps serve as the light sources of the future.



More than 20 of Europe’s leading companies and research institutes have joined together in a research project entitled OLLA in order to advance organic light-emitting diode (OLED) technologies for lighting applications. The research team comprises European universities and research institutes as well as leading industrial players like Osram, Philips and Siemens and aims at the further development of light-emitting diodes toward a light source with a long lifetime and a high energy efficiency. “Our goal is a lifetime of 10.000 hours – which is 10 times longer than a standard light-bulb – and an efficiency of 50 lumens per Watt,” says Peter Visser of Philips, project manager of OLLA.

The next generation light source will be both flat – only half a millimetre thin – and light. It will have an extremely long lifetime, using only little energy in spite of its high brightness. Also, it will allow for various shape and colour combinations and a variety of appearances. Until now, OLEDs have primarily been developed for display applications with regard to mobile phones, laptops and televisions; however, they are supposed to serve as light sources in the future, too. Showing excellent characteristics, organic light-emitting diodes could compete with light bulbs and neon tubes in 10 or 15 years time. “In my opinion OLEDs are the ideal office room lighting. They can be attached flat to the ceiling and spread the light diffusely in the entire room,” Professor Karl Leo of the Institute of Applied Photophysics at the TU Dresden explains the benefits of the organic light source.
There is a myriad of possible applications for the innovative lighting technique. With the help of transparent light-emitting diodes windows could for instance be turned into light sources at night.



Scientists have adopted the OLED principle from nature. The basic principle of luminescence can for instance be observed with fireflies. Analysing this phenomenon, researchers noticed that some organic materials are comparable with semiconductors and, thus, are suitable for the transport of electric charges.

Organic light-emitting diodes consist of semiconducting organic layers which are in total only 100 nanometers wide and lie between two electrodes, an anode and a cathode, respectively. If voltage is applied to the electrodes, a current flows through the organic layers and – by the mechanism of electroluminescence – electrical energy is directly converted into light. By applying chemically diverse layers the desired colours can be generated. Currently, the Institute of Applied Photophysics is exploring methods to produce white light-emitting OLEDs based on small organic dye molecules. All processes are vacuum-based to allow for convenient solution-free processing which in turn allows for high reproducibility and yield.

The OLLA project, which is running until the year of 2008, comprises a budget of nearly 20 million Euros. More than half of it is funded by the European Commission’s 6th Framework Programme.

Prof. Dr. Karl Leo | alfa
Further information:
http://www.olla-project.org
http://www.tu-dresden.de

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>