Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of Friction and "The Da Vinci Code"

26.08.2005


Atoms are spaced periodically in one direction on a surface perpendicular to a quasicrystal’s 10-fold rotational axis. But at right angles they are spaced in a Fibonacci sequence, in which the ratio of short to long spacings is an irrational number like that of the Golden Mean. Friction is eight times greater in the periodic direction than in the aperiodic direction.


The Da Vinci Code, the best selling novel and soon-to-be-blockbuster film, may also be linked some day to the solving of a scientific mystery as old as Leonardo Da Vinci himself — friction. A collaboration of scientists from Lawrence Berkeley National Laboratory (Berkeley Lab) and the Ames Laboratory at Iowa State University have used Da Vinci’s principles of friction and the geometric oddities known as quasicrystals to open a new pathway towards a better understanding of friction at the atomic level.

In a paper published in the August 26 issue of the journal Science, a research collaboration led by Miquel Salmeron, a physicist with Berkeley Lab’s Materials Sciences Division, reports on the first study to measure the frictional effects of periodicity in a crystalline lattice. Using a combined Atomic Force Microscope (AFM) and Scanning Tunneling Microscope (STM), the researchers showed that friction along the surface of a quasicrystal in the direction of a periodic geometric configuration is about eight times greater than in the direction where the geometric configuration is aperiodic (without regularity).

Geometric periodicity was confirmed via rows of atoms that formed a Fibonacci sequence, a numerical pattern often observed in quasicrystals — and which was one of the clues to solving the Da Vinci code in the novel by Dan Brown.



"That we can get such a large difference in frictional force just by scratching the surface of a material in a different direction was a major surprise," says Salmeron. "Our results reveal a strong connection between interface atomic structure and the mechanisms by which frictional energy is dissipated."

Collaborating on the Science paper with Salmeron were Berkeley Lab’s Jeong Young Park and Frank Ogletree, and Raquel A. Ribeiro, Paul Canfield, Cynthia Jenks, and Patricia Thiel of the Ames Laboratory at Iowa State University.

The principles of friction, as described by Leonardo Da Vinci some 500 years ago, work fine for macroscale mechanics like keeping the moving parts in the engine of your car lubricated with oil. However, as mechanical devices shrink to nanosized scales (measured in billionths of a meter), a far better understanding of friction at the molecular level becomes crucial.

"Friction is difficult to characterize because there are so many different factors involved," says Park. "Scientific studies of frictional force were in limbo for such a long period of time because we simply didn’t have the tools we needed to study it at the atomic level."

The key tool deployed in this study was the combined AFM and STM. Both microscopes utilize a probe that tapers to a single atom at its tip. This tip is scanned across the surface of the sample to be studied, revealing atomic-level information. In the AFM mode, the tip actually touches the sample’s surface atoms like a phonograph needle making contact with a record — but with so little force that none of the scanned atoms are dislodged. In the STM mode, the tip never quite touches the sample atoms but is brought close enough that electrons begin to "tunnel" across the gap, generating an electrical current.

"We first used the STM mode to produce topographical images of our quasicrystals and ascertain which direction was periodic and which was aperiodic," says Salmeron. "We then switched to the AFM mode and gently scratched the crystals in each direction to measure and compare the frictional force."

At the atomic level, when two surfaces come in contact, the chemical bonds and clouds of electrons in their respective atoms create frictional force and cause energy to be dissipated. From Da Vinci’s studies it has long been known that friction is greater between surfaces of identical crystallographic orientation than between surfaces of differing orientation, because, says Salmeron, "commensurability leads to intimate interlocking and high friction."

However, some recent studies have reported higher frictional differences, or anisotropy, for incommensurate crystal surfaces when there were periodicity differences.

To measure the frictional effects due to periodicity alone, and not to other factors such as chemical differences, Salmeron, Park, and Ogletree worked with decagonal quasicrystals of an aluminum-nickel-cobalt alloy (Al-Ni-Co) prepared by their collaborators at Ames Laboratory, renowned experts on the surfaces of quasicrystalline materials.

Stacked planes of Al-Ni-Co crystals exhibit both ten-fold and two-fold rotational symmetry. By cutting a single Al‑Ni-Co quasicrystal parallel to its ten-fold axis, the researchers were able to produce a two-dimensional surface with one periodic axis and one aperiodic axis, separated by 90 degrees.

"Strong friction anisotropy was observed when the AFM tip slid along the two directions: high friction along the periodic direction, and low friction along the aperiodic direction," says Park. "We believe the source of this friction has both an electronic and a phononic contribution." Phonons are vibrations in a crystal lattice, like atomic sound waves.

The authors of the Science paper said that new theoretical models are needed to determine whether electrons or phonons are the dominant contributors to the frictional anisotropy they report.

"Our results finally give theorists a chance to be proactive in their modeling of friction," Salmeron says.

"High Frictional Anisotropy of Periodic and Aperiodic Directions on a Quasicrystal Surface," by Jeong Young Park, D. F. Ogletree, M. Salmeron, R. A. Ribeiro, P. C. Canfield, C. J. Jenks, and P. A. Thiel appears in the August 26, 2005 issue of Science magazine . For more information visit the Salmeron Group website, http://stm.lbl.gov/, and Jeong Park’s webpage, http://stm.lbl.gov/people/Jeong.htm.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our Website at http://www.lbl.gov/.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht Kiel physicists discover new effect in the interaction of plasmas with solids
16.01.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Understanding insulators with conducting edges
16.01.2019 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

The pace at which the world’s permafrost soils are warming

16.01.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>