Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The unfolding space telescope

27.07.2005


Collimation testbed of the Dobson telescope


Deployment sequence of the Dobson telescope


A novel suitcase-sized telescope could revolutionise the way we see the Earth and other planets. ESA has supported the work of a group of students in developing the Dobson Space Telescope, being tested this month aboard ESA’s parabolic flight campaign aircraft.

This experimental prototype launches in a compact configuration and then unfolds to provide a cost-effective space telescope. It could lead to fleets of low-cost telescopes, bigger than the Hubble Space Telescope.

Large payloads are difficult to put into space because they are usually heavy and expensive to launch. Now a revolutionary design of unfolding telescope, inspired by telescopes used by amateur astronomers, is ready to enter a phase of detailed testing. If successful, it could dramatically reduce the cost of placing telescopes in space.



The telescope is a project of the Department of Astronautics at the Technische Universität Berlin, Germany. "We called our project the Dobson Space Telescope because we borrowed the idea from the Dobsonian telescopes used by amateur astronomers," says project manager Tom Segert, who has recently completed his degree at TU Berlin. Dobsonian telescopes are often comprised of two mirrors, held the correct distance apart by long poles. They can be dismantled and transported by car to a good observing site, where there are reassembled with nothing more complicated than a screwdriver.

In space, however, a screwdriver is useless unless you have an astronaut to turn it and so Segert plans to use a motor to unfold his telescope. Working on a shoestring budget, his first prototype used inflatable bicycle tyres to push the mirrors into position. When this proved incapable of aligning the telescope optics, Segert turned to metal truss rods and micromechanics to unfold everything into its correct place.

Using a grant from ESA’s General Studies Programme, Segert and other TU Berlin students have written a full technical report and built a prototype for testing in this month aboard ESA’s parabolic flight campaign aircraft. As the aircraft flies special manoeuvres, the prototype will experience periods of free-fall that mimic the conditions in space. During this time, Segert will test the telescope’s ability to unfold. Eventually, Segert hopes for a demonstration mission in space.

Earth observation made easy

Currently, space-based observations account for just one tenth of the commercial Earth observation market. The rest is supplied by aeroplane reconnaissance, which is much cheaper. Space observations cost 20 Euros per kilometre whereas aeroplane data is twenty times cheaper. Segert believes that cost-effective Earth observation microsatellites, based on his telescope design, will allow all users access to space images.

There is also nothing to stop a Dobson Space Telescope from turning its attention from Earth to the wider cosmos. In fact, Segert imagines the first missions could ’timeshare’ between Earth and astronomical observation. "When the telescope flies into the shadow of the Earth and so can’t take pictures of the ground, we could turn it around and observe astronomical targets," he says.

Future versions could be sent to other planets. As the telescope is so lightweight, it could be mounted on a Mars Express-sized spacecraft and used to take pictures showing details as small as 30 cm across on the Martian surface.

Although the prototype contains a respectable 50 cm-diameter mirror, Segert believes that it can scaled up in the future to achieve space telescopes bigger than the Hubble Space Telescope but still at a fraction of the cost. "If we did that," says Segert, "the astronomers would be in heaven."

Clovis de Matos | EurekAlert!
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>