Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hidden force of the ring

23.06.2005


It is difficult to imagine modern life without plastics. Look around you, they are everywhere: pens, PC’s, lenses, furniture, etc. They are cheap, long-lasting and light and, moreover, they have good mechanical, thermal and dielectric properties, to such an extent that they have replaced wood, metal or glass in many applications. The polysulphone, phenoxyl or polycarbonate thermoplastics studied in this thesis are highly resistant (the last one being used for car fenders), ductile and flexible.



The quid of the question is that these interesting properties at a macroscopic scale (the ordinary, everyday-life scale) depend on: 1) the structure of the polymer chains and 2) the movements of their component molecules and atoms at a microscopic scale (the scale of atoms). Despite the fact that, on sight, a card (for example) does not “move", the atoms in its interior are continually moving and we would be able to see this if we had a giant magnifying glass. In this study the “glass” used was a technique known as neutron dispersion (NS). By means of NS the relative position of atoms can be known and the movement studied of these small particles, the neutrons, and how they are deviated from their trajectory on passing through the material studied below.

The existence of a direct correlation between the mechanical properties of a thermoplastic and the phenomenon known as Secondary Relaxations has been known for some time amongst the scientific community. Regarding the latter, although it is known that they are linked with the movement of molecules in general, in the majority of cases their exact origin and nature are not known, i.e. exactly how atoms and molecules move and/or the factors that determine that the same molecule in some cases moves and in others does not. In particular, thermoplastics that contain phenyl rings present prominent secondary relaxations and are quite similar amongst each other. Thus, the idea was, through NS techniques, to study the movement of these rings in various thermoplastics (the three previously mentioned), in order to subsequently compare these movements with secondary relaxation phenomena. The phenyl rings are flat and rigid structures (like a coin) that unite the two ends of the principal plastic chain in such a way that the final result is a species of “a necklace of coins”. The peculiarity of the set of materials chosen is that, in each case, the interlinking rings on the chain are separated by different, more or less large and flexible molecular units. That is to say, following on with the metaphor of the “necklace”, different sized and coloured “beads” are inserted between the coin structures.


The results show that the rings carry out oscillation and rotation movements about the axis of the principal chain. It has been shown that the nature of the molecular groups surrounding the ring on the chain (the colour or size of the “beads”) can limit or foment the movement of the same. Thus, for example, the mobility of the rings in polycarbonates is increased by the presence of the adjacent carbonate group. Finally, the comparison of these movements with the secondary relaxations has revealed that the movement of these rings derives from the relaxations in these materials, emphasising the role played by the rings - “the hidden force of the ring”, in their positive properties.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com
http://www.elhuyar.com

More articles from Physics and Astronomy:

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

nachricht Physicists edge closer to controlling chemical reactions
11.12.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>