Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover secrets behind nanotube formation

11.02.2005


Nanotubes are ubiquitous in the world of science. Although several methods for making them exist, little is known about how these techniques physically produce the hollow fibers of carbon molecules known as nanotubes, that is until now. A multinational team of scientists has discovered that multi-walled carbon nanotubes made by the pure carbon arc method are, in fact, carbon crystals that form inside drops of glass-coated liquid carbon. The research appears in the 11 February 2005, issue of the journal Science, published by the AAAS, the science society, the world’s largest general scientific organization.


Glassy drops of carbon coat the fibers that house nanotubes after their synthesis with a carbon arc.


Nanotubes coated with glassy drops of carbon poke through the surface of a column housing nanotubes.



One way to make nanotubes involves using a carbon arc to heat graphite to about 5,000 C. An electrical current is passed through the graphite in a chamber filled with helium gas. The result is a sooty deposit on one of the electrodes that contains columns filled with nanotubes. "We were doing research on the electrical transport properties of carbon nanotubes when we noticed that the nanotubes had these little beads that looked like liquid drops on them, said lead author Walt A. de Heer, physics professor at the Georgia Institute of Technology.

Much like archeologists studying artifacts to decipher what happened in centuries past, the research team began with the photos of the liquid-like beads coating the nanotube fibers and worked their way back to try to find out how they got there. "Just by looking at them we realized that this has something to do with liquid," said de Heer. "So we asked the question, if the beads were once liquid carbon and the nanotubes they are attached to are also carbon, why didn’t the liquid carbon dissolve the nanotube? The answer is that the liquid must have been a glass at a lower temperature than the nanotube."


It is well known that glass is made by rapidly cooling a liquid. The fast rate of cooling doesn’t allow the molecules time to align themselves in the orderly arrangement of crystals and they remain in the disordered grouping of the liquid.

The research team saw that the beads had the disordered grouping characteristic of glass, while the nanotubes they surrounded had an orderly crystalline pattern. This lead them to conclude that the carbon arc must have melted the graphite into drops of liquid carbon, which had cooled at a much faster rate on the outside, giving it a glassy appearance.

Since the nanotubes in the interior had a crystalline structure, the team reasoned that the liquid carbon on the inside of the drops had cooled so slowly it became a supercooled liquid, which is a liquid below the temperature which normally turns it into a solid. As the temperature of any supercooled liquid drops to a certain critical temperature, it begins to crystallize. Which in this case, researchers reasoned, resulted in the orderly molecular structure of the nanotubes.

As the nanotubes continue to crystalize they lengthen - poking through the glass layer - causing the glass to bead on the tubes much like water beads on pine needles. This final portrait of the beads on nanotube fibers is the photo that began the research team’s initial questions. "Before we began this work, we had spent a lot of time investigating these fibers, because they had special significance for our work. Most people don’t look at the fibers. They open them up to get the nanotubes inside, but the balls are on the surface." said de Heer. "It took us having to see them several times - actually they were quite annoying - but then we realized that they may have some significance by themselves We hope our results will open up the whole question of nanotube formation again."

The research team consists of de Heer and Zhimin Song from the Georgia Institute of Technology, Daniel Ugarte from Universidade Estadual de Campinas and Laboratorio Nacional de Luz Sincrotron in Brazil, Jefferson Bettini also from Laboratorio Nacional de Luz Sincrotron, Philippe Poncharal from Universite Montpellier in France, Claire Berger from the Georgia Institute of Technology and the Laboratoire d’Études des Propriétés Électroniques des Solides in France and Joseph Ghezo from the University of Illinois at Urbana-Champaign.

David Terraso | EurekAlert!
Further information:
http://www.icpa.gatech.edu
http://www.sciencemag.org
http://www.aaas.org

More articles from Physics and Astronomy:

nachricht Unprecedented Views of the Birth of Planets
13.12.2018 | Universität Heidelberg

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Success at leading conference on silicon materials science and technology in Japan

13.12.2018 | Awards Funding

NSF-supported scientists present new research results on Earth's critical zone

13.12.2018 | Earth Sciences

Barely scratching the surface: A new way to make robust membranes

13.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>