Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers guide light through liquids and gases on a chip

19.10.2004


A major step forward for optical sensing technology



Researchers at the University of California, Santa Cruz, have reported the first demonstration of integrated optical waveguides with liquid cores, a technology that enables light propagation through small volumes of liquids on a chip. The new technology has a wide range of potential applications, including chemical and biological sensors with single-molecule sensitivity. "It is an enabling technology that opens up a wide range of fields to the use of optics on integrated semiconductors to do experiments or build devices," said Holger Schmidt, an assistant professor of electrical engineering at UC Santa Cruz.

Schmidt and graduate student Dongliang Yin designed the liquid-core waveguides so they could be made using the standard silicon fabrication technology used on an industrial scale to make computer chips. The fabrication process yields a hollow-core waveguide that works whether the core is filled with liquid or gas. They described the novel waveguides and the results of optical testing of the devices in the October 18 issue of the journal Applied Physics Letters.


Guiding light waves through liquids and gases is a challenge because of their relatively low refractive indexes. In an optical fiber, light travels through a core with a high index of refraction surrounded by cladding with a lower index of refraction. The difference in refractive indexes results in "total internal reflection" of light waves, allowing transmission of optical signals over long distances.

To build a waveguide with a liquid or gas core, Schmidt relied on the principle of antiresonant reflecting optical waveguides (ARROW). ARROW waveguides with solid cores have been used for semiconductor lasers and other applications. The technique uses multiple layers of materials of precise thicknesses as cladding to reflect light back into the core. Schmidt’s group has achieved low-loss propagation of light over useful distances in hollow-core ARROW waveguides containing air or liquids. "Liquids and gases are the natural environment for molecules in biology and chemistry. If you can guide light through water and air, all of the fields that rely on nonsolid materials can take advantage of integrated optics technology," Schmidt said.

Schmidt is working toward chemical sensing of single molecules using liquid-core waveguides. He also sees potential applications for gas-core waveguides in the areas of atomic physics and quantum optics.

As cladding materials for the hollow-core waveguides, the researchers chose silicon nitride and silicon dioxide because of their compatibility with microfabrication techniques and the potential for integration with silicon-based electronics. The cladding layers are deposited over a sacrificial layer that is later etched away to create the hollow core, which has a rectangular shape. With a thickness of 3.5 microns and a width of 9 microns, it is the smallest hollow light guide ever made. The fabrication was done at a facility at Brigham Young University by John Barber and Aaron Hawkins of BYU, both coauthors on the paper.

"We can make many waveguides in parallel on a chip, so you can imagine probing 20 to 30 channels at one time, with each channel containing a different sample," Schmidt said. "And because it is all silicon technology, we can integrate it with electrical contacts and even put a silicon photodetector right on the chip."

Schmidt’s team has also made two-dimensional arrays of waveguides that connect with each other at 90 degree angles, another useful feature made possible by silicon microfabrication techniques.

The researchers have been able to detect molecular fluorescence from a liquid sample in the core of the waveguide, using light from a helium-neon laser to stimulate a fluorescent dye. The experiment detected fluorescence from 800 molecules of dye in a sample volume of 200 picoliters (a picoliter is one trillionth of a liter). Further refinements should enable detection of single molecules, Schmidt said.

Fiberoptic connections can channel light into the waveguides, which could also be coupled with microfluidics systems--so-called "labs on a chip"--to control the flow of samples into and out of the waveguide cores.

Schmidt is also working with David Deamer, professor and chair of biomolecular engineering at UCSC, to combine liquid-core waveguides with a nanopore device developed in Deamer’s lab. Deamer’s nanopore device can feed linear molecules such as single-stranded DNA through a 2.5-nanometer channel one at a time.

"The idea is to use the nanopore to feed single molecules one by one into a very small volume in the core of the waveguide and capture the photons released by each molecule. There is really nothing like this--it’s a totally novel approach to single-molecule detection," said Deamer, who is also a coauthor on the new paper.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>