Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers guide light through liquids and gases on a chip

19.10.2004


A major step forward for optical sensing technology



Researchers at the University of California, Santa Cruz, have reported the first demonstration of integrated optical waveguides with liquid cores, a technology that enables light propagation through small volumes of liquids on a chip. The new technology has a wide range of potential applications, including chemical and biological sensors with single-molecule sensitivity. "It is an enabling technology that opens up a wide range of fields to the use of optics on integrated semiconductors to do experiments or build devices," said Holger Schmidt, an assistant professor of electrical engineering at UC Santa Cruz.

Schmidt and graduate student Dongliang Yin designed the liquid-core waveguides so they could be made using the standard silicon fabrication technology used on an industrial scale to make computer chips. The fabrication process yields a hollow-core waveguide that works whether the core is filled with liquid or gas. They described the novel waveguides and the results of optical testing of the devices in the October 18 issue of the journal Applied Physics Letters.


Guiding light waves through liquids and gases is a challenge because of their relatively low refractive indexes. In an optical fiber, light travels through a core with a high index of refraction surrounded by cladding with a lower index of refraction. The difference in refractive indexes results in "total internal reflection" of light waves, allowing transmission of optical signals over long distances.

To build a waveguide with a liquid or gas core, Schmidt relied on the principle of antiresonant reflecting optical waveguides (ARROW). ARROW waveguides with solid cores have been used for semiconductor lasers and other applications. The technique uses multiple layers of materials of precise thicknesses as cladding to reflect light back into the core. Schmidt’s group has achieved low-loss propagation of light over useful distances in hollow-core ARROW waveguides containing air or liquids. "Liquids and gases are the natural environment for molecules in biology and chemistry. If you can guide light through water and air, all of the fields that rely on nonsolid materials can take advantage of integrated optics technology," Schmidt said.

Schmidt is working toward chemical sensing of single molecules using liquid-core waveguides. He also sees potential applications for gas-core waveguides in the areas of atomic physics and quantum optics.

As cladding materials for the hollow-core waveguides, the researchers chose silicon nitride and silicon dioxide because of their compatibility with microfabrication techniques and the potential for integration with silicon-based electronics. The cladding layers are deposited over a sacrificial layer that is later etched away to create the hollow core, which has a rectangular shape. With a thickness of 3.5 microns and a width of 9 microns, it is the smallest hollow light guide ever made. The fabrication was done at a facility at Brigham Young University by John Barber and Aaron Hawkins of BYU, both coauthors on the paper.

"We can make many waveguides in parallel on a chip, so you can imagine probing 20 to 30 channels at one time, with each channel containing a different sample," Schmidt said. "And because it is all silicon technology, we can integrate it with electrical contacts and even put a silicon photodetector right on the chip."

Schmidt’s team has also made two-dimensional arrays of waveguides that connect with each other at 90 degree angles, another useful feature made possible by silicon microfabrication techniques.

The researchers have been able to detect molecular fluorescence from a liquid sample in the core of the waveguide, using light from a helium-neon laser to stimulate a fluorescent dye. The experiment detected fluorescence from 800 molecules of dye in a sample volume of 200 picoliters (a picoliter is one trillionth of a liter). Further refinements should enable detection of single molecules, Schmidt said.

Fiberoptic connections can channel light into the waveguides, which could also be coupled with microfluidics systems--so-called "labs on a chip"--to control the flow of samples into and out of the waveguide cores.

Schmidt is also working with David Deamer, professor and chair of biomolecular engineering at UCSC, to combine liquid-core waveguides with a nanopore device developed in Deamer’s lab. Deamer’s nanopore device can feed linear molecules such as single-stranded DNA through a 2.5-nanometer channel one at a time.

"The idea is to use the nanopore to feed single molecules one by one into a very small volume in the core of the waveguide and capture the photons released by each molecule. There is really nothing like this--it’s a totally novel approach to single-molecule detection," said Deamer, who is also a coauthor on the new paper.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht New Insight into Molecular Processes
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Exoplanet stepping stones
21.11.2018 | W. M. Keck Observatory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>