Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest window for space completed

09.09.2004


Cupola will be attached to Node-3


Internal view of Cupola during vibro-acoustic testing


A ceremony to mark development phase completion of Cupola was held in Turin, Italy, on Monday 6 September. From inside Cupola, a dome-shaped structure fitted with seven specially developed windows, astronauts will have a panoramic view for observing and guiding operations on the outside of the International Space Station (ISS).

With a diameter of about 2 metres and height of 1.5 metres, the European-built Cupola provides a shirtsleeve working environment for two crewmembers. The ergonomically designed interior is equipped with workstations from which astronauts will be able to control the Station’s robotic arm.

Addressing representatives from ESA, NASA, Alenia Spazio and the subcontractors, ESA’s Director for Human Spaceflight, Joerg Feustel-Buechl, congratulated the team on completion of the Cupola. Acknowledging the important contribution of main contractor Alenia Spazio, Mr Feustel-Buechl pointed out that once completed, roughly 50% of the pressurized volume of Station will have been designed and developed by the Turin-based company.



Maurizio Tucci, CEO of Alenia Spazio, expressed his satisfaction about the number of modules built by Alenia Spazio and explained that with the assembly of the Node 3 module just getting underway they will soon be able to complete the series.

Looking to the future Tucci is confident that the specialized knowledge gained by the company through the development of Cupola and other pressurized modules for the ISS, can be used to design and develop solutions for longer stays in space – such as the human exploration of the Moon and Mars.

The Cupola project was started in America by NASA and Boeing, but was cancelled as a result of cost cuts. After a barter agreement between NASA and ESA, development of the Cupola was taken over by Europe in 1998.

Alenia Spazio designed, developed and integrated the Cupola in Turin, leading an industrial team made up six major European aerospace companies: CASA (Spain), APCO (Switzerland), SAAB Ericsson (Sweden), Lindholmen Development (Sweden), EADS Space Transportation (Germany) and Verhaert (Belgium).

ESA’s Cupola Project Manager, Philippe Deloo, praised the companies involved, each having contributed their specialist knowledge, for their strong motivation and good relations.

As explained by Alenia Spazio Cupola Project Manager, Doriana Buffa, the Cupola, with its seven windows, is very unlike any of the other modules on the Station and so presented some unique challenges. For example the six trapezoidal side-windows, and the 80-cm diameter circular rooftop window of the Cupola must be able to withstand the extreme environment that they will be exposed to in space.

For the astronauts, the Cupola will also be a highly welcome addition to the Station after it is installed on Node-3 in January 2009. The large viewing windows will provide the astronauts with a view of the Earth quite unlike any other. For long-stay crews this will provide them with an important psychological boost – described symbolically by Buffa as an umbilical cord connecting the crew on the Station to Mother Earth.

The 1.8 tonne Cupola will now be transported to the Kennedy Space Center at Cape Canaveral, Florida where it will undergo final acceptance in November 2004.

Dieter Isakeit | alfa
Further information:
http://www.esa.int
http://www.esa.int/esaHS/SEMHAL0XDYD_index_0.html

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>