Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lehigh group reports best threshold values for near-infrared range InGaAsN lasers

16.12.2003


The ink was hardly dry on his new contract as assistant professor of electrical and computer engineering at Lehigh, when Nelson Tansu announced a breakthrough in his research into high-performance lasers.




In two recent issues of Applied Physics Letters (APL) - on July 7 and Sept. 29, Tansu and other collaborating researchers reported the best threshold values to date for near-infrared-range (with an emission wavelength of 1300-nm), indium-gallium-arsenide-nitride (InGaAsN) lasers emitting from a quantum well.

Tansu’s group also achieved the best threshold values yet for near-infrared-range quantum-well (QW) lasers operating under continuous-wave conditions at temperatures up to 100 degrees C.


The work of Tansu’s group was featured in the September issue of LaserFocusWorld, a photonics and optoelectronics industry journal.

One month later, on Oct. 10, Tansu was featured in the cover article of GATRA, the second-most widely circulated weekly news magazine in Indonesia (population 250 million), where Tansu was born and raised. The article described five Indonesians who are employed as university professors outside Indonesia.

The first APL article, titled "High-performance and high-temperature continuous-wave-operation 1300-nm InGaAsN quantum well lasers by organometallic vapor phase epitaxy," is one of eleven journal and conference papers Tansu has published since joining the Lehigh faculty.

The other articles have appeared in several APLs, IEEE’s Journal of Quantum Electronics, IEEE’s Journal of Selected Topics in Quantum Electronics, the Proceedings of the 16th IEEE Laser and Electro Optics Society Annual Meeting (2003), and other journals and conference proceedings. Tansu has also been invited to write a review paper on the physics and devices of dilute nitride lasers for an issue of the IOP’s Journal of Physics: Condensed Matter Physics in 2004.

The general goal of Tansu’s work is to use metal organic chemical vapor deposition (MOCVD) to develop lasers and advanced compound semiconductor nanostructures for optoelectronic devices. His research interests are also related to combining these semiconductor nanostructures with photonic crystals (artificial structures with periodicity of certain optical properties), to realize novel optoelectronic devices. His work has applications in optical communications, mid-infrared devices, free-space communications, visible light sources, information sciences, and biochemical detection.

Tansu says the criteria for high-performance lasers include low operating current, high efficiency, the ability to operate at high speeds at a range of temperatures (from room temperature to 100 degrees C.), and the ability to operate at high temperatures without the need for costly additional electronics to maintain thermal stability.

One type of laser with which Tansu works is high-performance VCSELs, or vertical cavity surface-emitting lasers, which are cheap to produce and operate at a low current. VCSELs are used in short-haul communications systems, which operate with an 850-nm wavelength, allow a transmission range of about 200-500 meters and are typically used in university campuses, offices, residential complexes, and similar venues.

The accomplishments by Tansu’s group have the potential to lead to the realization of low-cost and high-performance 1300-nm VCSELs, capable of a transmission rate of 10 gigabytes per second. Tansu’s group is one of the first to realize high-performance near-infrared range InGaAsN quantum wells by using MOCVD technology, which is the technology of choice to realize VCSELs in manufacturing. Near-infrared range lasers, which operate with a 1300-nm wavelength, allow a transmission range of 20 to 100 kilometers and are also called metropolitan optical networks because they can connect cities that are in close proximity.

The group achieved its breakthrough using InGaAsN, a new lasing material also known as dilute-nitride, on a gallium-arsenide substrate, instead of the conventional approach based on indium-phosphide technology.

"Using dilute-nitride grown on a gallium-arsenide base," says Tansu, "it is much easier to make the high-performance reflectors that are critical to achieving high-performance VCSELs. We accomplished this by using MOCVD, which is also known as MOVPE [Metal-Organic Vapor Phase Epitaxy]."

Tansu’s works represent the first realization of MOCVD-grown high-performance 1300-nm dilute-nitride lasers under continuous-wave (CW) operations rather than pulsed conditions, and with a better performance than that achieved with molecular beam epitaxy. (A German research group previously demonstrated that type of high-performance laser with molecular beam epitaxy.) CW is a virtual prerequisite for lasers to be used in real-world applications; pulsed conditions are typically used in the early stages of experimentation.

The lasers in Tansu’s system emit from a 6-nm-thick quantum well that is grown on a dilute-nitride semiconductor nanostructure layer using a strained-compensated technique.

Tansu earned his bachelor’s and Ph.D. degrees in 1998 and 2003, respectively, from the University of Wisconsin-Madison, where he also won the 2003 Harold A. Peterson Best Research Paper Award.


Kurt Pfitzer | Lehigh University
Further information:
http://www3.lehigh.edu/engineering/news/tansuvaluesforinfraredrange.asp

More articles from Physics and Astronomy:

nachricht JILA researchers make coldest quantum gas of molecules
22.02.2019 | National Institute of Standards and Technology (NIST)

nachricht (Re)solving the jet/cocoon riddle of a gravitational wave event
22.02.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>