Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists lead the field in solving matter mystery of the Big Bang

10.12.2003


A University of Sussex-led team of scientists is ahead in the race to solve one of the biggest mysteries of our physical world: why the Universe contains matter.



With the help of a new £2.3 million grant, the team is working on a project to make one of the most sensitive measurements ever of sub-atomic particles. The results, expected within six years, could finally help to explain the creation of matter in the aftermath of the Big Bang.

Physicist Dr Philip Harris, the leader of the Sussex group, says: “Although there are a couple of other teams in the world working in this same area, we’re managing to stay ahead of them, and we are constantly striving to beat our own world record. This is all very exciting for us. With this new development, we are on the verge of a major breakthrough in our understanding of the very origin of matter in the Universe.”


The question that has vexed scientists and astronomers for years is why there is more matter in the Universe than anti-matter. Both were formed at the time of the Big Bang, about 13.7 billion years ago. For every particle formed, an anti-particle should also have been formed. Almost immediately, however, the equal numbers of particles and anti-particles would have annihilated each other, leaving nothing but light. But a tiny asymmetry in the laws of nature resulted in a little matter being left over, spread thinly within the empty space of the Universe. This became the stars and planets that we see around us today.

The only way scientists can verify their theories to explain this anomaly is to study the corresponding asymmetry in sub-atomic particles. It has taken five decades of research to reach the stage where measurements of these particles, called neutrons, have become sensitive enough to test the very best candidate theories. Neutrons are electrically neutral, but they have positive and negative charges moving around inside them. If the centres of gravity of these charges aren’t in the same place, it would result in one end of the neutron being slightly positive, and the other slightly negative. This is called an electric dipole moment and is the phenomenon that physicists have been working to find for the past 50 years.

Using a £2.3 million grant from the Particle Physics and Astronomy Research Council, the Sussex scientists are collaborating with physicists at the Rutherford Appleton Laboratory and the Universities of Oxford and Kure (in Japan) to develop a new apparatus to measure the electric dipole moment.

The apparatus is a type of atomic clock that uses spinning neutrons instead of atoms. It will apply 300,000 volts to a container storing neutrons in a bath of liquid helium, which is kept at a temperature just above absolute zero. The clock frequency will be measured through nuclear magnetic resonance. Once completed, the apparatus is predicted to be one hundred times more sensitive than its predecessor.

Jacqui Bealing | alfa
Further information:
http://www.sussex.ac.uk

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>