Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not your father’s periodic table

14.10.2003


Dimitri Mendeleev, a Russian, and Lothar Meyer, a German, published early versions of periodic tables in 1869 and 1870, respectively. Well, roll over, Mendeleev, tell Meyer the news: Washington University’s Katharina Lodders has developed an innovative periodic table, slanted toward astronomy, that’s definitely not your father’s periodic table.
David Kilper/WUSTL photo


Dimitri Mendeleev
Courtesy photo


Revised periodic table slanted toward astronomers

The periodic table isn’t what it used to be, thanks to innovations by a planetary chemist at Washington University in St. Louis.

Katharina Lodders, Ph.D., Washington University research associate professor in Earth and Planetary Sciences in Arts & Sciences, has evalutated data from numerous studies including her own and arranged the data into a periodic table slanted toward astronomers and cosmochemists. It’s the Cosmochemical Periodic Table of the Elements in the Solar System. Instead of atomic number, atomic weights, and melting- and boiling points, for example, Lodders provides elemental abundances and condensation temperatures. And it’s color-coded to indicate host phases of the elements - the phase where the element condenses into metal, sulfide, or silicate rock.



It’s an outright work of art, definitely not your father’s periodic table

"For the first time, there is a periodic table providing self-consistent data for abundances and condensation temperatures," she said. "The idea was to combine everything for easy comparison and quick reference."

It’s one-stop shopping for astronomers and cosmochemists, a sort of Sam’s Club for researchers of the cosmos. The table will be very valuable for researchers modeling planets and planetary satellites, meteorites and asteroids, and other stars and solar systems. And it also is beneficial because the abundances of elements presented in the table reflect the latest developments in astronomy. One of the most recent influential findings is that the heavier elements - everything heavier than helium - in the sun’s outer layer, its photosphere, settle towards its interior.

Because the sun contains more than 99 percent of the entire mass of the solar system, the composition of the sun tells astronomers much of what they need to know of the whole solar system. But if the heavy elements settled from the photosphere, researchers can no longer use the photospheric abundances observed today as representative of solar system abundances about 4.5 billion years ago when the planets formed.

Lodders takes that into account. In her table for the abundances and the condensation temperatures, she calculated for the new abundance set. In part, she used results from models of the sun’s evolution to assemble the abundance data together with recent redeterminations of several important elemental abundances, including the key biogenic elements carbon, oxygen, and nitrogen.

"It turns out that these abundances are only roughly half of that previously thought," she said. "This is important because if the abundances of carbon and oxygen, a major fraction of the heavy elements in the sun and solar system, have been revised downward, then there will be changes introduced in the amount of condensates that can form and in the amount of oxygen tied up into rocky condensates and ices.

"If I use the old abundances, about 15 percent of the total oxygen goes into rock, but now it’s about 23 percent oxygen that can go into rocky condensates. This means less oxygen is available to form ices, which is an important consequence for modeling all of the chemistry of the outer solar system - giant planets, their satellites and other icy bodies such as comets."

Lodders’ table made its debut in July 31, 2003 at the Meteoritical Society Meeting in Munster, Germany. All of the data appear in table and text in "Solar System Abundances and Condensation Temperatures of the Elements," published July 10, 2003, in The Astrophysical Journal.

"This table reflects the work of many astronomers and cosmochemists going back to the ’60s and ’70s, and abundance determinations and condensation modeling are continuing," said Lodders. "But the abundance tables and the related condensation temperatures needed desperate updating because of all the new developments. It was time to put it all together."

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/424.html
http://www.wustl.edu/

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>