Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists may have succeeded in reproducing matter as it first appeared after the Big Bang


Multi-National team of physicists include Weizmann Institute Scientists

Recent results of a joint experiment conducted by 460 physicists from 57 research institutions in 12 countries strongly indicate that the scientists have succeeded in reproducing matter as it first appeared in the universe; this matter is called the quark-gluon plasma. The experiment, called PHENIX and conducted at the Brookhaven National Laboratory on Long Island, New York, has brought together physicists from Brazil, China, France, Germany, Hungary, India, Israel, Japan, South Korea, Russia, Sweden and the United States. The Israeli team is led by Prof. Itzhak Tserruya, head of the Weizmann Institute’s Particle Physics Department. Tserruya and his colleagues have designed and built unique particle detectors that are a central part of PHENIX’s detecting system.

In the first millionth of a second after the Big Bang, the atoms of different elements as we know them today did not yet exist. The main components of atoms, protons and neutrons, had not yet been "born" either. The jets of blazing matter that dispersed in all directions in the first few fractions of a second in the existence of the universe contained a mixture of free quarks and gluons, called the quark-gluon plasma. Later on, when the universe cooled down a bit and became less dense, the quarks and gluons got "organized" into various combinations that created more complex particles, such as the protons and neutrons. Since then, in fact, quarks or gluons have not existed as free particles in the universe.

Scientists studying the unique physical properties of the quark-gluon plasma have been trying to recreate this primordial matter using an accelerator, called RHIC, built especially for this purpose at the Brookhaven National Laboratory. This accelerator creates two beams of gold ions and accelerates them one towards the other, causing a head-on collision. The power of the collisions (about 40 trillion electron volts, also termed 40 tera electron volts) turns part of the beams’ kinetic energy into heat, while the other part of the energy turns into various particles (a process described by Einstein’s well-known equation E=mc2). The first stage in the creation of these new particles, like the first stage of the creation of matter in the Big Bang, is assumed to be the stage of the quark-gluon plasma.

One of the ways to identify the quark-gluon plasma is to observe the behavior of particles entering the plasma. When a single quark propagates through regular matter (containing protons and neutrons), it emits radiation that slows down its progress somewhat. In contrast, when it enters a very dense medium like quark-gluon plasma, it will slow down much more. That’s precisely the phenomenon that has recently been observed and analyzed in the PHENIX experiment. According to the physicists taking part in the experiment, these findings could indicate that they have succeeded in creating the quark-gluon plasma.

The detectors designed and built by Prof. Tserruya are capable of providing three-dimensional information on the precise location of the particles ejected from the collision area. These particles’ direction, together with their energy and identity, help distinguish the matter’s properties in the collision area. Apart from Prof. Tserruya, the Weizmann team that designed and built the detectors included Prof. Zeev Fraenkel, Dr. Ilia Ravinovich, postdoctoral fellow Dr. Wei Xie and graduate students Alexandre Kozlov, Alexander Milov and Alexander Cherlin.

Prof. Tserruya’s research is supported by Nella and Leon Benoziyo Center for High Energy Physics.

Prof. Tserruya is the incumbent of the Samuel Sebba Professorial Chair of Pure and Applied Physics.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment

Alex Smith | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers develop new lens manufacturing technique
21.05.2019 | Washington State University

nachricht Planetologists explain how the formation of the moon brought water to Earth
21.05.2019 | Westfälische Wilhelms-Universität Münster

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Latest News

A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers

22.05.2019 | Power and Electrical Engineering

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Science & Research
Overview of more VideoLinks >>>