Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An aerial for light

17.02.2003


Austrian physicists report unusual light-metal interaction



A team under Professor Franz Aussenegg at the University of Graz in Austria is looking into unusual interactions between light and submicroscopic metal particles. The physicists’ findings represent a major advance towards the development of improved data storage media and optical sensors. They also confirmed theoretical predictions and merited publication in 13 international scientific journals. These are the impressive results of a two-year project funded by the Austrian Science Fund (FWF) that has been investigating the nano-cosmos.

“There’s plenty of room at the bottom,” said American Nobel Prizewinner Richard P. Feynman back in 1959. By “the bottom” he meant the world of things that are too small to see, and his point is proved by today’s computer chips, which are constantly becoming smaller yet can process increasing amounts of data, and the steadily growing capacity of CDs and DVDs. However data processing in ever tinier dimensions calls for new technologies. One of these, nano-optics, which uses light, is being researched into by Prof. Aussenegg’s team at the University of Graz Institute for Experimental Physics in Austria.


“For physical reasons guiding light with the help of lenses, mirrors or prisms is no longer possible when you get down to millionths of millimetres — the nanoworld,” said the Institute’s director, Aussenegg. “But this is the level where light — or to be more precise, optoelectrical fields — can be led through solid materials. In principle, it’s like guiding radio and TV signals through aerials and cables.” This is possible because light enters into a fascinating interaction with metal at the nanometre level. It is no longer reflected but instead excites electrons near the surface of the metal, causing them to oscillate. For a short time the light is “captured“ in the metallic structure, as an electrical field. If this “surface plasmon” state lasts long enough the optoelectrical oscillations in the metal can be channelled, as though they were travelling along a nanoscopic wire. This is crucial to the prospects of nano-optics as a practical technology.

The Graz project, completed in December 2002, succeeded in demonstrating that it is possible to influence the duration of the oscillating state of electrons near the surface of a grating-like structure of metal particles that are a few millionths of a millimetre apart from each other. The FWF backed project investigated the influence of the precise dimensions of gold and silver gratings. It provided convincing confirmation of the theoretical prediction that the right ratio of the spacing of the metal particles and their size to the wavelength of the light would quadruple the duration of the oscillation.

The team’s findings have laid the groundwork for the use of light as an alternative to electrotechnology in telecommunications engineering, data processing and data storage. The results have already opened the way for improved data storage media and optical sensors. The researchers’ work has attracted widespread attention, as shown by an article published on 24 October in the online version of Britain’s Economist magazine which spoke of a “significant step towards properly integrated optoelectronics”. Again and again, the origins of industrial revolutions have lain in fundamental research, and the breakthrough in Graz could be the start of another.

Bildunterschrift: The principle of the surface plasmon: light spreads outwards on a nanoscopic metal surface similarly to a wave in water.

Alexandra Stolba | alfa

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>