Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An aerial for light

17.02.2003


Austrian physicists report unusual light-metal interaction



A team under Professor Franz Aussenegg at the University of Graz in Austria is looking into unusual interactions between light and submicroscopic metal particles. The physicists’ findings represent a major advance towards the development of improved data storage media and optical sensors. They also confirmed theoretical predictions and merited publication in 13 international scientific journals. These are the impressive results of a two-year project funded by the Austrian Science Fund (FWF) that has been investigating the nano-cosmos.

“There’s plenty of room at the bottom,” said American Nobel Prizewinner Richard P. Feynman back in 1959. By “the bottom” he meant the world of things that are too small to see, and his point is proved by today’s computer chips, which are constantly becoming smaller yet can process increasing amounts of data, and the steadily growing capacity of CDs and DVDs. However data processing in ever tinier dimensions calls for new technologies. One of these, nano-optics, which uses light, is being researched into by Prof. Aussenegg’s team at the University of Graz Institute for Experimental Physics in Austria.


“For physical reasons guiding light with the help of lenses, mirrors or prisms is no longer possible when you get down to millionths of millimetres — the nanoworld,” said the Institute’s director, Aussenegg. “But this is the level where light — or to be more precise, optoelectrical fields — can be led through solid materials. In principle, it’s like guiding radio and TV signals through aerials and cables.” This is possible because light enters into a fascinating interaction with metal at the nanometre level. It is no longer reflected but instead excites electrons near the surface of the metal, causing them to oscillate. For a short time the light is “captured“ in the metallic structure, as an electrical field. If this “surface plasmon” state lasts long enough the optoelectrical oscillations in the metal can be channelled, as though they were travelling along a nanoscopic wire. This is crucial to the prospects of nano-optics as a practical technology.

The Graz project, completed in December 2002, succeeded in demonstrating that it is possible to influence the duration of the oscillating state of electrons near the surface of a grating-like structure of metal particles that are a few millionths of a millimetre apart from each other. The FWF backed project investigated the influence of the precise dimensions of gold and silver gratings. It provided convincing confirmation of the theoretical prediction that the right ratio of the spacing of the metal particles and their size to the wavelength of the light would quadruple the duration of the oscillation.

The team’s findings have laid the groundwork for the use of light as an alternative to electrotechnology in telecommunications engineering, data processing and data storage. The results have already opened the way for improved data storage media and optical sensors. The researchers’ work has attracted widespread attention, as shown by an article published on 24 October in the online version of Britain’s Economist magazine which spoke of a “significant step towards properly integrated optoelectronics”. Again and again, the origins of industrial revolutions have lain in fundamental research, and the breakthrough in Graz could be the start of another.

Bildunterschrift: The principle of the surface plasmon: light spreads outwards on a nanoscopic metal surface similarly to a wave in water.

Alexandra Stolba | alfa

More articles from Physics and Astronomy:

nachricht Weizmann physicists image electrons flowing like water
12.12.2019 | Weizmann Institute of Science

nachricht Revealing the physics of the Sun with Parker Solar Probe
12.12.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>