Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acoustic microscopy

05.12.2002


At this week’s First Pan American/Iberian Meeting on Acoustics in Cancun, researchers presented results on acoustic microscopy, a burgeoning technique that could provide new kinds of medically useful information on biological tissue. Unlike many other microscopy techniques, acoustical microscopy can be performed on living tissue and even inside the body, with the use of small ultrasound probes. And unlike optical microscopy of biological specimens, acoustic microscopy does not require tis sue staining.

In the technique, an ultrasound probe makes contact with a tissue sample, then yields an image based on how the tissue responds to the ultrasound. Although the resolution of acoustical microscopy is ultimately limited to about the cell level, rather than the molecular level (its maximum resolution is about 0.1 microns, about a hundredth of the width of a red blood cell), it can provide unique information on a biological tissue’s mechanical properties. For many materials, the mechanical properties have a wider range of values than the optical properties, so the technique could come in handy for characterizing Alzheimer’s plaques, to name one example. In principle, an acoustic microscope could also yield quick assessments on the pathology of skin lesions, without a biopsy and long before other techniques could provide information.

At the meeting, researchers described how acoustic microscopy is already advancing cardiology, specifically in the area of intravascular ultrasound (IVUS), in which a small ultrasound camera is threaded into the body to detect artery blockage. Using a scanning acoustic microscope to gather basic data on artery plaque, Yoshifumi Saijo of Tohoku University (saijo@idac.tohoku.ac.jp) and his colleagues are helping clinicians better interpret IVUS images. Employing knowledge from acoustical microscopy, Ton van der Steen (vandersteen@tch.fgg.eur.nl) of the Erasmus Medical Center in the Netherlands and colleagues have developed a clinical technique called IVUS elasticity imaging, which can detect vulnerable artery plaques, a hard-to-catch condition which kills up to 250,000 people every year in the US alone. (Session 1pBB at the meeting; Background information at http://www.acoustics.o rg/press/144th/Jones.htm and http://www.eur.nl/fgg/thorax/ela sto/)

Phillip F. Schewe | AIP Bulletin
Further information:
http://www.acoustics.o rg/press/144th/Jones.htm
http://www.eur.nl/fgg/thorax/ela sto/

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>