Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers propose breakthrough devices to control the motion of magnetic fields

06.11.2002


Researchers from the University of Michigan and RIKEN, a research institute in Japan, say the biological motors that nature uses for intracellular transport and other biological functions inspired them to create a whole new class of micro-devices for controlling magnetic flux quanta in superconductors that could lead to the development of a new generation of medical diagnostic tools.

As integrated circuits become smaller and smaller, it becomes increasingly difficult to create the many "guiding channels" that act like wires to move electrons around the circuit components.

This difficulty in wiring nano-circuits must be overcome if researchers are to continue developing the microscopic machines and sensors that represent the wave of the future in nanotechnology. A similar problem exists for researchers developing better magnetic imaging tools for medical diagnostics. Here the goal is to control the motion of magnetic field lines within the superconducting material, so that their motion does not produce noise that degrades the performance of the diagnostic device. A new approach and several novel devices described in a recent article in Nature Materials offer hope that the noise challenge has been overcome.



In the November issue of Nature Materials, researchers Franco Nori of the Center for Theoretical Physics, Physics Department, Applied Physics Program, and the Center for the Study of Complex Systems at the University of Michigan and the Frontier Research System of the Institute of Physical and Chemical Research (RIKEN) in Tokyo, and Sergey Savel’ev of RIKEN have described a number of new ways to control the motion of flux quanta.

Magnetic fields penetrate superconducting materials via lattices of quantized magnetic flux, called vortices because electrons whirl around them without dissipating energy. Electrical currents, externally applied to superconducting devices, induce the motion of these magnetic flux quanta. This vortex motion produces noise that degrades the device performance in practical applications, such as the sensitive measuring of the magnetic fields produced by the brain. Therefore, the precise control of the motion of these vortices is of central importance for applications involving superconducting materials.

By controlling the motion of quanta inside superconducting materials, the new devices allow the design of micro-machines such as "pumps," "diodes" and "lenses" of magnetic flux quanta to create specific magnetic profiles within a given sample or device. This would give designers the ability to remove unwanted flux trapped inside superconducting devices and enable researchers to increase the magnetic field in designated target regions inside materials, which would "magnetically focus" nearby magnetic particles.

Inspired by the design of biological "motors" that use sawtooth-shaped spatially-asymmetric structures (one slope of the sawtooth-shaped structure has a steep slope, and the other one a mild slope) to move small objects, Nori and Savel’ev propose using time-asymmetric forces to achieve a similar sawtooth pattern. By repeatedly pushing slowly in one direction, and fast in the opposite direction, they force magnetic flux quanta to move from one point to another inside materials. Their proposed solid-state devices could be used in specific technological applications, including the removal of unwanted fluctuating vortices inside the most sensitive magnetic field sensors used for medical imaging, and to sculpt the magnetic flux profile inside superconducting materials as needed for specific applications.

Moreover, these devices achieve control without having to resort to the umbersome electron-beam lithography or irradiation techniques that are now used to pattern the host material. "[The researchers’] groundbreaking idea is to apply a current or magnetic field to the superconductor that is asymmetric in time, rather than space," said G. D’Anna of the Ecole Polytechnique Fédérale de Lausanne in Switzerland, writing in the same issue of Nature Materials. "This remarkable proposal makes it possible to create asymmetric flux motion, which should inspire experimentalists to build a new generation of superconducting devices for controlling magnetic flux quanta."

One of the devices, for example, acts like a convex or concave lens, allowing the creation of a "changeable magnetic landscape" inside the superconducting material (see the two schematic diagrams of "magnetic lenses"). But the authors also stress that their idea has a broader scope. "These are a whole new class of micro-devices," Nori says. "The point is that in a complex system, a time-asymmetric external force applied to one set or species of moveable objects can precisely control the dynamics of another subset, even without the external force directly interacting with the latter. This allows novel ways of indirect manipulation and control of the motion of one species of particles by using another type that interacts with it. For instance, small particles with different electric charges or different magnetic moments could be manipulated via this technique."


The manuscript is available from http://www.nature.com/cgi-taf/DynaPage.taf?file=/nmat/journal/v1/n3/abs/nmat746.html&dynoptions=doi1036515051.

For the full text, contact author: Prof. F. Nori at nori@umich.edu.

Contact: Judy Steeh
Phone: 734-647-3099
E-mail: jsteeh@umich.edu


The University of Michigan
News Service
412 Maynard
Ann Arbor, MI 48109-1399

Judy Steeh | EurekAlert!
Further information:
http://www.physics.lsa.umich.edu/nea/
http://www.riken.go.jp/engn/r-world/research/lab/frontier/quantum/digital/index.html
http://www.umich.edu/~newsinfo

More articles from Physics and Astronomy:

nachricht Quantum gas turns supersolid
23.04.2019 | Universität Innsbruck

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>