Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Phoenix Mars Lander Checking Soil Properties

09.06.2008
The arm of NASA's Phoenix Mars Lander released a handful of clumpy Martian soil onto a screened opening of a laboratory instrument on the spacecraft Friday, but the instrument did not confirm that any of the sample passed through the screen.

Engineers and scientists on the Phoenix team assembled at the University of Arizona are determining the best approach to get some of that material into the instrument. Meanwhile, the team has developed commands for the spacecraft to use cameras and the Robotic Arm on Saturday to study how strongly the soil from the top layer of the surface clings together into clumps.

Images taken Friday show soil resting on the screen over an open sample-delivery door of Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, an instrument for identifying some key ingredients. The screen is designed to let through particles up to one-millimeter (0.04 inch) across while keeping out larger particles, in order to prevent clogging a funnel pathway to a tiny oven inside.

An infrared beam crossing the pathway checks whether particles are entering the instrument and breaking the beam.

The researchers have not yet determined why none of the sample appears to have gotten past the screen, but they have begun proposing possibilities.

"I think it's the cloddiness of the soil and not having enough fine granular material," said Ray Arvidson of Washington University in St. Louis, the Phoenix team's science lead for Saturday and digging czar for the mission.

"In the future, we may prepare the soil by pushing down on the surface with the arm before scooping up the material to break it up, then sprinkle a smaller amount over the door," he said.

Another strategy under consideration is to use mechanical shakers inside the TEGA instrument differently than the five minutes of shaking that was part of the sample-receiving process on Friday. No activities for the instrument are planned for Saturday, while the team refines plans for diagnostic tests.

Phoenix's planned activities for Saturday include horizontally extending a trench where the lander dug two practice scoops earlier this week, and taking additional images of a small pile of soil that was scooped up and dropped onto the surface during the second of those practice digs.

"We are hoping to learn more about the soil's physical properties at this site,"
Arvidson said. "It may be more cohesive than what we have seen at earlier Mars landing sites."

The Phoenix mission is led by Peter Smith at the University of Arizona with project management at JPL and development partnership at Lockheed Martin, Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

WEBLINKS:
Phoenix Mars Mission, UA - http://phoenix.lpl.arizona.edu Phoenix Mars Mission, NASA - http://www.nasa.gov/phoenix
MEDIA CONTACTS:
Guy Webster, Jet Propulsion Laboratory
(818-354-5011; guy.webster@jpl.nasa.gov) Sara Hammond, University of Arizona (520-626-1974; shammond@lpl.arizona.edu) Dwayne Brown, NASA Headquarters (202-358-1726; dwayne.c.brown@nasa.gov)

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://www.nasa.gov/phoenix
http://phoenix.lpl.arizona.edu

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>