Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe gets together to harness quantum physics

05.06.2008
The long cherished goal of applying the strange properties of quantum mechanics to the macroscopic world we inhabit has been brought closer by a series of recent developments.

The exciting progress was made in the important field of quantum optics and discussed recently at a high level conference organised by the European Science Foundation in collaboration with the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (FWF) and the Leopold-Franzens-Universität Innsbruck (LFUI).

Quantum optics is fundamental to the whole field of quantum science, because it deals with the interactions between light and matter at the elementary level that determine ultimately how atoms and molecules behave. A thorough understanding of quantum optics in its broadest sense has the potential to lead to new (quantum) technologies that will help define the 21st century, according to Professor Jörg Schmiedmayer, who chaired the ESF conference.

Quantum science has great potential to revolutionise the worlds of computing and communications, enabling massive increases in processing power, data storage densities, and data transfer rates. Although most of the applications are still many years away, dramatic progress has been made laying the groundwork for projects at the laboratory level that demonstrate the concepts on a small scale. A gratifying aspect of the conference, according to Schmiedmayer, was the exceptionally high standard of contributions made, and excitement generated, by young researchers, who will be the standard bearers for the field over the important two decades to come. "The hot topic sessions, where mostly young researches presented their results, were definitively among the highlights of the conference," said Schmiedmayer. "At these very new science was discussed, science that was not even envisioned three years ago. Many results had not yet been presented elsewhere before."

Significant progress was noted for example in quantum communication, which promises to enable totally secure transmission of information over communications networks. It is easy to scramble information in such a way that it is totally undecipherable to anyone except the recipient, providing one has a secret key known only to both parties. The problem lies in transmitting that key between the parties while being sure it has not been eavesdropped in the process. Quantum cryptography uniquely provides a mechanism that gives that absolute assurance, for example through exploitation of quantum entanglement, in which the state of two particles is quantum correlated so that any attempt to intercept one would lead to a detectable change in the other. Applied to communications this enables both parties to know that nobody else has intercepted that key, which can then be used safely to scramble the actual information to be transmitted. Quantum Key Distribution (QKD) has already been demonstrated in the laboratory, but only over distances up to 150 Kms because at larger scales the optical fibres, or the air in free space, used to transmit the light signals absorbs and /or scrambles the individual photons, which then lose their quantum state. At the conference major steps towards realizing a 'quantum repeater' to faithfully connect communication channels were presented, which should allow eventually quantum communication to be extended over much longer, perhaps global, distances.

Quantum science and thereby quantum optics methods also have great potential for quantum computers, which promise to deliver undreamed of processing power. The conference heard about new experiments with superconducting quantum circuits, which could be used in future for novel integrated circuits involving quantum effects, a remarkable progress that brings the heart of quantum optics into solid state devices and electronic (quantum) circuits.

There was also great interest at the conference in high fidelity quantum gates in ion traps, according to Schmiedmayer. Ion traps were the first devices where quantum computation schemas were proposed and implemented. Now with high fidelity quantum operations, ion traps are the ideal platform to build and research quantum logic components for future scalable quantum computers. The idea is that ions, which are atoms or molecules that have lost or gained electrons from their outer shells, are suspended in free form in an electromagnetic field so that their energy levels can be manipulated precisely, down to the level of individual quanta. This could potentially be exploited to store and transfer information within a quantum computer.

A third topic was concerned with quantum simulations, where the tools of quantum optics are used to 'build' well controlled experimental models of theoretical concepts, which are in themselves too hard to be solved completely either by analytic methods or by simulation on classical computers. Such quantum simulations hold the promise to give us insight into some of the big outstanding problems in solid state physics, like the mechanism behind high temperature super conductivity, or problems on quantum magnetism. The conference heard about how to build specific 'interactions' needed to build such simulation models in the laboratory, or how quantum coherence and its dynamics can be probed in low dimensional systems

A forth focus was on Quantum Technologies and precision measurements. Remarkable progress was reported in controlling mechanical oscillators, bringing them close to the quantum regime, and the promise to put the 'quantum' into mechanics or small nano-objects in the very near future. There was great interest also in an experiment that demonstrated high fidelity Bloch oscillations by controlling atom-atom interactions. This opens the possibility for ultra precise quantum measurements with BEC's, an aspect which was believed to be very difficult because of the non linear nature of these systems.

There were many more exciting results and concepts presented and discussed. The conference fulfilled its objectives by bringing together people in these diverse quantum fields, and starting to take quantum mechanics into the material solid state world, according to Schmiedmayer.

The ESF-FWF Conference in Partnership with LFUI, on QUANTUM OPTICS: FROM PHOTONS AND ATOMS TO MOLECULES AND SOLID STATE SYSTEMS, was held in February 2008 at the Universitätszentrum Obergurgl, Ötz Valley, near Innsbruck, Austria.

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Physics and Astronomy:

nachricht Liquid crystals in nanopores produce a surprisingly large negative pressure
25.04.2019 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht New robust device may scale up quantum tech, researchers say
25.04.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>