Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strange ring found circling dead star

30.05.2008
A paper published in Nature today co-authored by academics at the University of Hertfordshire, reports that NASA's Spitzer Space Telescope has found a bizarre ring of material around the magnetic remains of a star that blasted apart into smithereens.

The paper entitled An infrared ring around the magnetar SGR 1900+14 relates to the stellar corpse, called SGR 1900+14, which belongs to a class of objects known as magnetars. These are extremely dense collapsed cores of massive stars that blew up in supernova explosions, but unlike other dead stars, they slowly pulsate with X-rays and have tremendously strong magnetic fields.

The stellar corpse, called SGR 1900+14, belongs to a class of objects known as magnetars. These are the cores of massive stars that blew up in supernova explosions, but unlike other dead stars, they slowly pulsate with X-rays and have tremendously strong magnetic fields.

"The universe is a big place and weird things can happen," said Stefanie Wachter of NASA's Spitzer Science Center at the California Institute of Technology, Pasadena, who found the ring serendipitously. "I was flipping through archived Spitzer data of the object, and that's when I noticed it was surrounded by a ring we'd never seen before." Wachter is lead author of a paper about the findings in this week’s issue of Nature. You can see the ring at http://www.nasa.gov/mission_pages/spitzer/multimedia/20080528.html .

Wachter and her colleagues think that the ring, which is unlike anything ever seen before, formed in 1998 when the magnetar erupted in a giant flare. They believe the crusty surface of the magnetar cracked, sending out a flare, or blast of energy, that excavated a nearby cloud of dust, leaving an outer, dusty ring. This ring is oblong, with dimensions of about seven by three light-years. It appears to be flat, or two-dimensional, but the scientists said they can't rule out the possibility of a three-dimensional shell.

The discovery could help scientists figure out if a star's mass influences whether it becomes a magnetar when it dies. Though scientists know that stars above a certain mass will "go supernova," they do not know if mass plays a role in determining whether the star becomes a magnetar or a run-of-the-mill dead star. According to the science team, the ring demonstrates that SGR 1900+14 belongs to a nearby cluster of young, massive stars. By studying the masses of these nearby stars, the scientists might learn the approximate mass of the original star that exploded and became SGR 1900+14.

Dr Jonathan Granot of the University of Hertfordshire’s Centre for Astrophysics Research (http://star.herts.ac.uk/) said: “The shape and size of the dust-free cavity surrounding the magnetar provide unique and valuable information on the activity history of its giant-flares.These are rare events, where only three such events have ever been recorded from all known SGRs, and only one of them from SGR1900+14. The fact that the ring is elongated (with an axis ratio of about 2:1) implies that the giant flare was anisotropic - brighter in some directions relative to others (by a factor of several).”

Helene Murphy | alfa
Further information:
http://www.nasa.gov/spitzer
http://web.ipac.caltech.edu/staff/sscnews/private/MagnetarDisk/
http://www.herts.ac.uk

More articles from Physics and Astronomy:

nachricht Simple experiment explains magnetic resonance
09.12.2019 | University of California - Riverside

nachricht Electronic map reveals 'rules of the road' in superconductor
09.12.2019 | Rice University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>