Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab free-electron laser upgrade could induce completely new phenomena in materials

04.07.2002


What questions will it answer; what opportunities will it offer?



History doesn’t record the moment when fully conscious humans asked the first question. The incessant push of human curiosity has nevertheless changed the world. Even so, despite the seemingly inexorable march of science and technology into the current century, questions don’t seem in short supply. Gwyn Williams, basic research program manager for Jefferson Lab’s Free-Electron Laser (FEL), suspects some important answers may be forthcoming as a result of the FEL upgrade currently underway.

"The FEL is such a powerful light source that it induces completely new phenomena in materials," Williams says. "All kinds of unexpected properties emerge. Creating carbon nanotubes [for electronics and super-strong structures] comes as a result of exciting graphite, for instance. This upgrade gives us a window with a whole new view. We’re beginning to truly understand how the world works at the level of a single atom."


Should such an enhanced understanding emerge, scientists and engineers could custom-design materials atom by atom. This prospect, embraced by those in the field known as nanotechnology, could begin a large-scale products revolution unprecedented in human history. First, however, researchers must significantly deepen their understanding of the submicroscopic. Williams points out that because of its power and precision, FEL light can help do just that, illuminating these smallest of realms: a kind of ultra-fast camera that will freeze-frame even the most complex physical or chemical reactions.

With the exception of density, a property of matter constrained and described by the nucleus within atoms, the physical properties of all materials are primarily determined by the way electrons act. Everyday technology, from lamps to laptops, is controlled by the behavior and flow of electrons, and is manifested in such properties as hardness, conductivity and materials-energy flow. Observing specific electron behavior, however, is difficult. Scientists who conduct such observations need an intense light source — and now have one, in the form of the FEL.

FEL research falls into three broad categories: photo-induced chemistry, biology and materials. Before beginning the upgrade, some 20 formal proposals had been made for FEL-focused research. Seventeen of these proposals were given FEL beam time before the FEL shutdown in November. These will be prioritized and will carry forward once the upgrade is complete.

Among the areas under investigation will be the function of protein molecules within human cells as well as the mechanisms that determine and degrade materials purity, such as the silicon that comprises many computer components. Scientists will also study the effects of new surface compounds, produced when metals bathed in nitrogen are exposed to FEL light, and explore novel areas such as "spintronics," which concerns the properties of next generation semiconductor designs that optimize performance using newly discovered properties of electrons.

The addition of ultraviolet-light (UV) capability will further augment the FEL’s utility by enabling experiments that assess the nature and extent of the human health risk arising from increased ultraviolet light. Further, because of the nature of its construction and operation, the FEL accelerator’s electron beam can produce light with a frequency in the range of thousands of trillions of cycles per second. This "terahertz" capacity could conceivably lead to imagers that could quickly detect biological agents, such as anthrax, and hunt for concealed land mines.

"As scientists and as people, we want to improve the quality of life," Williams says. "This machine, already the most powerful in the world, is getting even better. It should enable us to make important progress in the next several years."


###

Linda Ware | EurekAlert!

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>