Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black hole sheds light on a galaxy

18.04.2008
Light echo of a high-energy flash from a black hole first observed in detail

A light echo occurs when interstellar gas is heated by radiation and reacts by emission of light. An international team led by Stefanie Komossa from the Max Planck Institute for extraterrestrial Physics in Garching, Germany, has observed the light echo of an enormous X-ray flare, which was almost certainly produced when a single star was disrupted by a supermassive black hole. For the first time, the light echo of such a rare and highly dramatic event could be observed in great detail. The light echo not only revealed the stellar disruption process, but it also provides a powerful new method for mapping galactic nuclei (Astrophysical Journal Letters, May 2008).


Illustration: MPE/ESA
The artistic view shows the light echo of a high-energy flash from a black hole

When a star is disrupted by a black hole in the nucleus of a galaxy, its debris is inevitably attracted and absorbed by the black hole. This sudden increase in the accretion rate causes an abrupt burst of ultraviolet and X-ray light because the gas from the disrupted star becomes very hot. As the high-energy radiation travels through the core of the galaxy it illuminates surrounding matter and so makes it possible to probe regions of the galaxy that would otherwise be unobservable.

“To study the core of a normal galaxy is like looking at the New York skyline at night during a power failure: You can’t learn much about the buildings, roads and parks”, says Stefanie Komossa. “The situation changes, for example, during a fireworks display. It’s exactly the same when a sudden burst of high-energy radiation illuminates a galaxy.” However the astronomers

had to hurry up and look through the telescope at the right moment, because X-ray bursts don’t last very long.

From the strength, the degree of ionization and the deduced velocities of the rapidly varying emission lines, the physicists can tell in which part of the galaxy they are emitted. The emission lines represent the “fingerprints” of the atoms in the hot gases heated by the flare. The galaxy with catalog name SDSSJ0952+2143 which was detected in December 2007 by Komossa and her team in the Sloan Digital Sky Survey archive caught their attention because of its superstrong iron lines: the strongest (relative to oxygen emission) that were ever observed in a galaxy. In them the authors see an evidence for a molecular torus which plays an important part in so-called unified models of active galaxies.

The unified model postulates that all active galaxies are made of identical components and that the perceived differences are just due to the different directions from which we view the galaxies. An important element of this model is the molecular torus, which surrounds the black hole and its accretion disk and covers them when viewed from certain directions. Also the breadth of the spectral lines which the scientists measure is influenced by the viewing direction and that means by the molecular torus.

Should the expectations of Komossa and her colleagues be confirmed, this will be the first time that scientists have seen such a strong time-variable signal from a molecular torus. From the light echo, the torus can be mapped and its geometry inferred, something which has not been possible up to now.

Along the same lines is the detection of variable emission in the infrared: It can be interpreted as the “last cry for help” of the heated dusty torus matter before the dust is destroyed by the flash.

In addition to the remarkably strong iron lines, the scientists also noticed a very peculiar shape of the hydrogen emission lines which had never been seen before. This line hints at activities of the disk of matter around the black hole, which consists mainly of hydrogen. “Probably we are seeing the debris of the disrupted star here which is just being accreted by the black hole”, explains Hongyan Zhou from the MPE, co-author of the research paper.

The recently-discovered light echo still continues and is being traced with powerful telescopes. The burst itself has faded away. The first observations with the X-ray satellite Chandra show measurable but already faint X-ray light from the galactic nucleus.

“Reverberation-mapping of light echoes opens up new possibilities to study galaxies”, concludes Komossa. The team now wants to use this method to explore the physical conditions in the circumnuclear material in active and non-active galaxies.

Original paper: http://xxx.lanl.gov/abs/0804.2670

Contact:

Dr. Mona Clerico
Press Officer
Max Planck Institute for Astrophysics and Max Planck Institute for extraterrestrial Physics

Phone +49 89 30000-3980 Email: clerico@mpe.mpg.de

Dr. Stefanie Komossa
Max Planck Institute for extraterrestrial Physics
Phone +49 89 30000-3577
Email: skomossa@mpe.mpg.de

Dr. Mona Clerico | Max-Planck-Gesellschaft
Further information:
http://www.mpe.mpg.de/main.html

More articles from Physics and Astronomy:

nachricht Liquid crystals in nanopores produce a surprisingly large negative pressure
25.04.2019 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht New robust device may scale up quantum tech, researchers say
25.04.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>