Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gravity wave "smoking gun" fizzles, according to Case Western Reserve University physics researchers

17.04.2008
But gravitational waves may be more sensitive probe of early universe physics than previously thought

A team of researchers from Case Western Reserve University has found that gravitational radiation—widely expected to provide "smoking gun" proof for a theory of the early universe known as "inflation"—can be produced by another mechanism.

According to physics scholars, inflation theory proposes that the universe underwent a period of exponential expansion right after the big bang. A key prediction of inflation theory is the presence of a particular spectrum of "gravitational radiation"—ripples in the fabric of space-time that are notoriously difficult to detect but believed to exist nonetheless.

"If we see a primordial gravitational wave background, we can no longer say for sure it is due to inflation," said Lawrence Krauss, the Ambrose Swasey Professor of Physics and Astronomy at Case Western Reserve.

At the same time the researchers find that gravitational waves are a far more sensitive probe of new physics near the highest energy scale of interest to particle physicists than previously envisaged. Thus their work provides strong motivation for the ongoing quest to detect primordial gravitational radiation.

Krauss, along with Case Western Reserve colleagues Katherine Jones-Smith, a graduate student, and Harsh Mathur, associate professor of physics, present these findings in an article "Nearly Scale Invariant Spectrum of Gravitational Radiation from Global Phase Transitions" published in Physical Review Letters this month.

Inflation theory arose in the 1980s as a means to explain some features of the universe that had previously baffled astronomers such as why the universe is so close to being flat and why it is so uniform. Today, inflation remains the best way to theoretically understand many aspects of the early universe, but most of its predictions are sufficiently malleable that consistency with observation cannot be considered unambiguous confirmation.

Enter gravitational radiation—the key prediction of inflation theory is the presence of a particular spectrum of gravitational radiation. Detection of this spectrum was regarded among physicists as "smoking gun" evidence that inflation did in fact occur, billions of years ago.

In 1992 Krauss, then at Yale, argued that another mechanism besides inflation could give rise to precisely the same spectrum of gravitational radiation as is predicted by inflation. The argument given by Krauss in 1992 provided a rough estimate of the spectrum.

Last year Krauss teamed up with Case Western Reserve colleagues, Jones-Smith, a graduate student in physics, and Mathur, associate professor of physics, to do a more complete calculation. They found that the exact calculation predicts the signal to be much stronger than the rough estimate.

Describing their results, Krauss said, "It is shocking and surprising when you find the answer is 10,000 times bigger than the rough estimate and could possibly produce a signal that mimics the kind produced by inflation."

Gravitational radiation is a prediction of Einstein's Theory of General Relativity. According to the theory, whenever large amounts of mass or energy are shifting around, it disrupts the surrounding space-time and ripples emanate from the region where the mass/energy shift.

These space-time ripples, known as gravitational radiation, are imperceptible on the human scale, but highly sensitive experiments (such as the Laser Interferometer Gravitational Wave Observatory (LIGO) in Livingston, La.) are designed precisely to look for such radiation and are the only hope for detecting them directly.

However, gravitational radiation from the early universe can also be detected indirectly through its effect on the cosmic microwave background (CMB) radiation (relic radiation from the Big Bang which permeates all space). The radiation from the CMB would become polarized in the presence of gravitational radiation. Detecting such polarized light is the mission of a satellite based experiment (Planck) set to launch in 2009.

The gravitational radiation produced by either inflation or the mechanism proposed by Jones-Smith, Krauss and Mathur would imprint itself on the CMB and be detected as polarization. Until now it was widely believed that a detection of polarized light from the CMB was a "smoking gun" for inflation theory. But with the publication of their recent paper in Physical Review Letters, Krauss and co-workers have raised the issue of whether that polarized light can be unambiguously tied to inflation.

The mechanism proposed by Krauss and coworkers invokes a phenomenon called "symmetry breaking" that is a central part of all theories of fundamental particle physics, including the so-called standard model describing the three non-gravitational forces known to exist. Here, a "scalar field" (similar to an electric or magnetic field) becomes aligned as the universe expands. But as the universe expands each region over which the field is aligned comes into contact with other regions where the field has a different alignment. When that happens the field relaxes into a state where it is aligned over the entire region and in the process of relaxing it emits gravitational radiation.

For more information contact Susan Griffith, 216.368.1004.

Susan Griffith | EurekAlert!
Further information:
http://www.case.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>