Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stars Burst Into Life In The Early Universe

01.04.2008
New measurements from some of the most distant galaxies bolster the evidence that the strongest burst of star formation in the history of the Universe occurred about two billion years after the Big Bang. An international team of astronomers from the UK, France, Germany and the USA have found evidence for a dramatic surge in star birth in a newly discovered population of massive galaxies in the early Universe.

In his talk at the RAS National Astronomy Meeting in Belfast on Tuesday 1 April, team member Dr Scott Chapman from the Institute of Astronomy in Cambridge will present observations of five of these galaxies that are forming stars at a tremendous rate and have large reservoirs of gas that will power the star formation for hundreds of millions of years. Dr Chapman’s work is supported by a parallel study made by PhD student Caitlin Casey, who finds that the star formation in the new galaxies is distributed over a vast area.

The galaxies are so distant that the light we detect from them has been travelling for more than 10 billion years. This means that we see them as they were about a three billion years after the Big Bang. The recent discovery of a new type of extremely luminous galaxy in this epoch - one that is very faint in visible light, but much brighter at longer, radio wavelengths - is the key to the new results.

A related type of galaxy was first found in 1997 (but not well understood until 2003) using a new and much more sensitive camera that detects radiation emitted at submillimetre wavelengths (longer than the wavelengths of visible light that we see with but somewhat shorter than radio waves). The camera, called `SCUBA' was attached to the James Clerk Maxwell Telescope (JCMT), on Mauna Kea in Hawaii.

In 2004 the Cambridge-led team of astronomers proposed that these distant "submillimetre-galaxies" might only represent half of the picture of rapid star formation in the early Universe, as SCUBA is biased towards colder objects. They suggested that a population of similar galaxies with slightly hotter temperatures could exist but have gone largely unnoticed.

The team of scientists searched for the missing galaxies using observatories around the world: the MERLIN array in the UK, the Very Large Array (VLA) in the US (both radio observatories), the Keck optical telescope on Hawaii and the Plateau de Bure submillimetre observatory in France. The instruments found and pinpointed the galaxies, measured their distances and then confirmed their star forming nature through the detection of the vastly extended gas and dust.

The new galaxies have prodigious rates of star formation, far higher than anything seen in the present-day Universe. They probably developed after the first stars and galaxies had already formed in what would have been a perfectly smooth Universe. None the less, studying these new objects gives astronomers an insight into the earliest epochs of star formation after the Big Bang.

With the new discovery, the Cambridge astronomers have provided a much more accurate census of some of the most extreme galaxies in the Universe at the peak of their activity. Future observations will investigate the details of the galaxies’ power source and try to establish how they will develop once their intense bursts of activity come to an end.

IMAGES AND FURTHER INFORMATION

Images and movie
http://www.ast.cam.ac.uk/~ccasey/sfrg.html
Plateau de Bure Interferometer
http://www.iram.fr/IRAMFR/index.htm
MERLIN
http://www.merlin.ac.uk/

Robert Massey | alfa
Further information:
http://nam2008.qub.ac.uk
http://www.ras.org.uk

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>