Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stars Burst Into Life In The Early Universe

01.04.2008
New measurements from some of the most distant galaxies bolster the evidence that the strongest burst of star formation in the history of the Universe occurred about two billion years after the Big Bang. An international team of astronomers from the UK, France, Germany and the USA have found evidence for a dramatic surge in star birth in a newly discovered population of massive galaxies in the early Universe.

In his talk at the RAS National Astronomy Meeting in Belfast on Tuesday 1 April, team member Dr Scott Chapman from the Institute of Astronomy in Cambridge will present observations of five of these galaxies that are forming stars at a tremendous rate and have large reservoirs of gas that will power the star formation for hundreds of millions of years. Dr Chapman’s work is supported by a parallel study made by PhD student Caitlin Casey, who finds that the star formation in the new galaxies is distributed over a vast area.

The galaxies are so distant that the light we detect from them has been travelling for more than 10 billion years. This means that we see them as they were about a three billion years after the Big Bang. The recent discovery of a new type of extremely luminous galaxy in this epoch - one that is very faint in visible light, but much brighter at longer, radio wavelengths - is the key to the new results.

A related type of galaxy was first found in 1997 (but not well understood until 2003) using a new and much more sensitive camera that detects radiation emitted at submillimetre wavelengths (longer than the wavelengths of visible light that we see with but somewhat shorter than radio waves). The camera, called `SCUBA' was attached to the James Clerk Maxwell Telescope (JCMT), on Mauna Kea in Hawaii.

In 2004 the Cambridge-led team of astronomers proposed that these distant "submillimetre-galaxies" might only represent half of the picture of rapid star formation in the early Universe, as SCUBA is biased towards colder objects. They suggested that a population of similar galaxies with slightly hotter temperatures could exist but have gone largely unnoticed.

The team of scientists searched for the missing galaxies using observatories around the world: the MERLIN array in the UK, the Very Large Array (VLA) in the US (both radio observatories), the Keck optical telescope on Hawaii and the Plateau de Bure submillimetre observatory in France. The instruments found and pinpointed the galaxies, measured their distances and then confirmed their star forming nature through the detection of the vastly extended gas and dust.

The new galaxies have prodigious rates of star formation, far higher than anything seen in the present-day Universe. They probably developed after the first stars and galaxies had already formed in what would have been a perfectly smooth Universe. None the less, studying these new objects gives astronomers an insight into the earliest epochs of star formation after the Big Bang.

With the new discovery, the Cambridge astronomers have provided a much more accurate census of some of the most extreme galaxies in the Universe at the peak of their activity. Future observations will investigate the details of the galaxies’ power source and try to establish how they will develop once their intense bursts of activity come to an end.

IMAGES AND FURTHER INFORMATION

Images and movie
http://www.ast.cam.ac.uk/~ccasey/sfrg.html
Plateau de Bure Interferometer
http://www.iram.fr/IRAMFR/index.htm
MERLIN
http://www.merlin.ac.uk/

Robert Massey | alfa
Further information:
http://nam2008.qub.ac.uk
http://www.ras.org.uk

More articles from Physics and Astronomy:

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

nachricht View of the Earth in front of the Sun
19.06.2019 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>