Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naval Research Laboratory to design lunar telescope to see into the dark ages

13.03.2008
A team of scientists and engineers led by the Naval Research Laboratory (NRL) will study how to design a telescope on the Moon for peering into the last unexplored epoch in the Universe’s history.

NASA has announced that it will sponsor a series of studies focusing on next-generation space missions for astronomy. These studies will contribute to the Decadal Survey, an effort undertaken every 10 years by astronomers and physicists to help establish priorities for future research directions in astronomy and astrophysics. The upcoming Decadal Survey occurs over the next two years.

Among the missions to be studied is the Dark Ages Lunar Interferometer (DALI), the NRL-led concept for a telescope based on the Moon and studying an era of the young Universe, during the first 100 million years of its existence. Although the night sky is filled with stars, these stars did not form instantaneously after the Big Bang. There was an interval, now called the “Dark Ages,” in which the Universe was unlit by any star. The most abundant element in the Universe, and the raw material from which stars, planets, and people are formed, is hydrogen. Fortunately, the hydrogen atom can produce a signal in the radio-wavelength part of the spectrum, at 21 cm; a wavelength far longer than what the human eye can detect. If these first signals from hydrogen atoms in the Dark Ages can be detected, astronomers can essentially probe how the first stars, the first galaxies, and ultimately the modern Universe evolved.

Because the Universe is expanding, the signals from these distant hydrogen atoms will be stretched (or redshifted) to much longer wavelengths, as large as several meters. While astronomical observations at radio wavelengths have a long history, this portion of the electromagnetic spectrum is now heavily used for various civil and military transmissions, all of which are millions of times brighter than the hydrogen signal that astronomers seek to detect. Additionally, the upper layers of the Earth’s atmosphere are ionized (the ionosphere), which introduce distortions into astronomical signals as they pass through on their way to telescopes on the ground.

With no atmosphere and shielding from the Earth, the far side of the Moon presents a nearly ideal environment for a sensitive Dark Ages telescope. In NRL’s DALI concept, scientists and engineers will investigate novel antenna constructions, methods to deploy the antennas, electronics that can survive in the harsh lunar environment, and related technology in preparation for developing a roadmap for research and development of a lunar telescope over the next decade. The team will also build on their experience in developing the Radio Observatory for Lunar Sortie Science, a NASA-funded study of a pathfinding array that would be located on the near side of the Moon.

The project leader at NRL, Dr. Joseph Lazio, pointed out that DALI will be one of the most powerful telescopes ever built and will bring us closer than we have ever been to understanding where our Universe came from and where it is going. “Probing the Dark Ages presents the opportunity to watch the young Universe evolve,” Dr. Lazio said. “Just as current cosmological studies have both fascinated and surprised us, I anticipate that DALI will lead both to increased understanding of the Universe and unexpected discoveries.”

When asked about the program, NRL Senior Astronomer Dr. Kurt Weiler remarked: “Building telescopes on the Moon is clearly a long-term project, but I am very excited about us getting started on this proposal.”

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>