Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological electron transfer captured in real time

04.03.2008
Two research teams led by Dr. Michael Verkhovsky and Prof. Mårten Wikström of the Institute of Biotechnology of the University of Helsinki have for the first time succeeded in monitoring electron transfer by Complex I in real time. In the future, this work might, for example, have medical relevance, because most of the maternally inherited so-called mitochondrial diseases are caused by dysfunction of Complex I.

This achievement required developing and building of a special device by which the enzyme-catalysed electron transfer could be captured at different time points by stopping the reaction at liquid nitrogen temperatures, on a microsecond (one millionth of a second) time scale. The electrons are very small elementary particles, which is why their transfer is very fast. This work is published this week in the prestigious journal of the American National Academy of Sciences (Proc. Natl. Acad. Sci.). The results give certain hints of the function of Complex I at the molecular level.

Electron transfer is central to many chemical reactions in the cell. It has particular functional importance in cell respiration, which in eukaryotes takes place in the inner mitochondrial membrane, and in the cell membrane of prokaryotes. In cellular respiration molecules stemming from food are oxidised to carbon dioxide, and the electrons liberated in the process are "fed" into the so-called respiratory chain, which consists of three successive membrane-bound enzyme complexes, finally to react with the oxygen we breathe, which is reduced to water using these electrons.

The purpose of electron transfer in cellular respiration is to release the major part of the energy of foodstuffs and to conserve it in a suitable form, ATP (adenosine triphosphate), which the cell may use in its energy-requiring reactions (e.g. biosynthesis, active transport, mechanical work), which are essential e.g. during fetal development and growth, in neural and kidney function, muscle contraction, etc. The energy captured in cellular respiration is transduced to ATP in two phases. The role of the respiratory chain is to couple electron transfer to the translocation of positively charged protons across the membrane, so that the mitochondrial membrane (or the cell membrane in bacteria) becomes electrically polarised, just like charging up a battery. In the second phase, the voltage difference of the battery is used to drive the protons back across the membrane, coupled to the synthesis of ATP by very special molecular machinery.

The first enzyme complex of the respiratory chain is called Complex I. High-energy electrons are fed into this complex in the form of a reduced coenzyme, NADH (nicotinamide adenine dinucleotide), which is oxidised to NAD+ having donated its two electrons. After this, the electrons are transferred along several protein-bound iron/sulphur centres in Complex I until they reach their destination, a molecule of ubiquinone, which is thus reduced to ubiquinol. This reaction, as catalysed by Complex I, is linked to proton translocation across the membrane and thus leads to "charging the battery". At a later stage ubiquinol donates its electrons further in the respiratory chain (ultimately to oxygen), by which it is oxidised back to ubiquinone to allow continuation of Complex I function.

For more information, please, contact Professor Mårten Wikström,
tel. +358 9 191 58000. Email: marten.wikstrom(at)helsinki.fi.

Kirsikka Mattila | alfa
Further information:
http://www.helsinki.fi

More articles from Physics and Astronomy:

nachricht First radio detection of an extrasolar planetary system around a main-sequence star
04.08.2020 | Max-Planck-Institut für Radioastronomie

nachricht The art of making tiny holes
04.08.2020 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>