Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists propose test of string theory based on neutral hydrogen absorption

30.01.2008
Ancient light absorbed by neutral hydrogen atoms could be used to test certain predictions of string theory, say cosmologists at the University of Illinois. Making the measurements, however, would require a gigantic array of radio telescopes to be built on Earth, in space or on the moon.

String theory – a theory whose fundamental building blocks are tiny one-dimensional filaments called strings – is the leading contender for a “theory of everything.” Such a theory would unify all four fundamental forces of nature (the strong and weak nuclear forces, electromagnetism, and gravity). But finding ways to test string theory has been difficult.

Now, cosmologists at the U. of I. say absorption features in the 21-centimeter spectrum of neutral hydrogen atoms could be used for such a test.

“High-redshift, 21-centimeter observations provide a rare observational window in which to test string theory, constrain its parameters and show whether or not it makes sense to embed a type of inflation – called brane inflation – into string theory,” said Benjamin Wandelt, a professor of physics and of astronomy at the U. of I.

“If we embed brane inflation into string theory, a network of cosmic strings is predicted to form,” Wandelt said. “We can test this prediction by looking for the impact this cosmic string network would have on the density of neutral hydrogen in the universe.”

Wandelt and graduate student Rishi Khatri describe their proposed test in a paper accepted for publication in the journal Physical Review Letters.

About 400,000 years after the Big Bang, the universe consisted of a thick shell of neutral hydrogen atoms (each composed of a single proton orbited by a single electron) illuminated by what became known as the cosmic microwave background.

Because neutral hydrogen atoms readily absorb electromagnetic radiation with a wavelength of 21 centimeters, the cosmic microwave background carries a signature of density perturbations in the hydrogen shell, which should be observable today, Wandelt said.

Cosmic strings are filaments of infinite length. Their composition can be loosely compared to the boundaries of ice crystals in frozen water.

When water in a bowl begins to freeze, ice crystals will grow at different points in the bowl, with random orientations. When the ice crystals meet, they usually will not be aligned to one another. The boundary between two such misaligned crystals is called a discontinuity or a defect.

Cosmic strings are defects in space. A network of strings is predicted by string theory (and also by other supersymmetric theories known as Grand Unified Theories, which aspire to unify all known forces of nature except gravity) to have been produced in the early universe, but has not been detected so far. Cosmic strings produce characteristic fluctuations in the gas density through which they move, a signature of which will be imprinted on the 21-centimeter radiation.

The cosmic string network predicted to occur with brane inflation could be tested by looking for the corresponding fluctuations in the 21-centimeter radiation.

Like the cosmic microwave background, the cosmological 21-centimeter radiation has been stretched as the universe has expanded. Today, this relic radiation has a wavelength closer to 21 meters, putting it in the long-wavelength radio portion of the electromagnetic spectrum.

To precisely measure perturbations in the spectra would require an array of radio telescopes with a collective area of more than 1,000 square kilometers. Such an array could be built using current technology, Wandelt said, but would be prohibitively expensive.

If such an enormous array were eventually constructed, measurements of perturbations in the density of neutral hydrogen atoms could also reveal the value of string tension, a fundamental parameter in string theory, Wandelt said. “And that would tell us about the energy scale at which quantum gravity begins to become important.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>