Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nowhere to hide – new ultra-powerful microscope probes atomic world

25.01.2008
A unique electron microscope, the first of its kind in the world, was unveiled yesterday at the STFC Daresbury Laboratory in Warrington.

It will enable scientists to study atoms within materials in a way that has never before been possible and will pave the way for pioneering research relating to every aspect of our lives, from research into liver disease, to the creation of the mobile phones and computers of the future. Sponsored by the EPSRC and led by the University of Liverpool, the SuperSTEM 2 has been created by a collaboration of leading scientists from the universities of Liverpool, Glasgow and Leeds and the Daresbury Laboratory.

Atoms are the building blocks of matter and the study of these atoms is known as nanotechnology. The SuperSTEM 2 can show an atom at 20 million times its size. At 20 million times its size an atom would measure approximately 5mm across. To put this into context, if a person were magnified by this much they would be able to hug the Earth! However, it is not just the scale of magnification that makes SuperSTEM 2 unique – it is also the sharpness of the image, its capability to provide elemental and chemical data about atoms and its stability. Built on sandstone bedrock, the incredibly stable geological conditions at the Daresbury Laboratory is one of the key reasons for its location – the system is so stable that any sample in the microscope would move no more than half a millimetre in 100 years. In other words, 2000 times slower than continental drift.

The SuperSTEM 2, or Scanning Transmission Electron Microscope, works by scanning a beam that has been focussed down to the size of an atom, across a sample, providing chemical information on the sample at the same time. Although scanning transmission electron microscopy has been used as a technique for some years, detailed imaging of atoms was previously impossible due to defects that all lenses suffer from. SuperSTEM 2 is a great advance on traditional techniques as it has an inbuilt computer-controlled system corrects these defects, much in the same way that glasses correct the defects in people’s eyes.

SuperSTEM also has applications in medicine and is being used to aid understanding of diseases such as the inherited disease haemochromatosis, where the liver becomes overloaded with iron. The tiny particles that hold iron within the body are being examined as their structure will shed light on how iron is transported, stored and released in the body and why they become toxic to the body when there is too much of it.

The University of Liverpool’s Dr Andrew Bleloch, Technical Director of SuperSTEM 2 at the Daresbury Laboratory said: “Our society places huge value on making things smaller, cheaper, faster and more effective. This often requires the creation of new materials, new ways of making materials and the understanding of the atoms within them. Progression in nanotechnology makes this all possible, but with this comes the responsibility of ensuring that these products are safe to use. The behaviour of atoms can change, depending on the size of the particle they are in. SuperSTEM 2 means that researchers can now study how these atoms behave in their ‘native’ form and how they might perform as components of different products that come into contact with human beings. An example of this would be how face creams or sun lotions work and how our bodies will react with the atoms found within them.”

The SuperSTEM 2 is now being applied to a whole raft of projects, including medical research to achieve a deeper understanding of liver disease. It is also being used in the future development of mountain bike tyres and the next generation of computer chips in the quest to make smaller, yet more powerful, computers and mobile phones.

Wendy Taylor | alfa
Further information:
http://www.dl.ac.uk
http://www.epsrc.ac.uk/

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>