Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC astronomer produces first detailed map of dark matter in a supercluster

11.01.2008
For the first time astronomers are able to see indirect evidence of dark matter and how this invisible force impacts on the crowded and violent lives of galaxies. University of British Columbia researcher Catherine Heymans has produced the highest resolution map of dark matter ever captured before.

Scientists believe that dark matter is the invisible web that houses galaxies. And as the universe evolves, the gravitational pull of this unseen matter causes galaxies to collide and swirl into superclusters.

Heymans and the University of Nottingham’s Meghan Gray led an international team to test this theory that dark matter determines the location of galaxies.

“For the first time we are clearly detecting irregular clumps of dark matter in a supercluster,” says Heymans, a postdoctoral fellow in the Dept. of Astronomy and Physics.

“Previous studies were only able to detect fuzzy, circular clumps, but we’re able to resolve detailed shapes that match the distribution of galaxies.”

Using NASA’s Hubble Space Telescope, Heymans and her team viewed an area of sky approximately the size of the full moon. They mapped the invisible dark matter scaffolding of the massive supercluster Abell 901/902 and the detailed structure of the individual galaxies embedded in it.

Abell 901/902 resides 2.6 billion light-years from Earth and measures more than 16 million light-years across.

“It is to the universe what New York is to America - a huge, fascinating but frightening place,” says Heymans.

“Dark matter leaves a signature in distant galaxies” explains study co-author Ludovic Van Waerbeke, an assistant professor in the Department of Physics and Astronomy. “For example, a circular galaxy will become more distorted to resemble the shape of a banana if its light passes near a dense region of dark matter.”

By observing this effect, astronomers can then infer the presence of dark matter. Heymans constructed a dark matter map by measuring the distorted shapes of more than 60,000 faraway galaxies located behind the Abell 901/902 supercluster. To reach Earth, these galaxies’ light traveled through the dark matter that surrounds the Abell 901/902 supercluster of galaxies and was bent by its massive gravitational field.

The Hubble study pinpointed four main areas in the supercluster where dark matter has pooled into dense clumps, totaling 10 trillion times the Sun’s mass. These areas match the known location of hundreds of old galaxies that have experienced a violent history in their passage from the outskirts of the supercluster into these dense regions.

Lorraine Chan | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Physics and Astronomy:

nachricht Liquid crystals in nanopores produce a surprisingly large negative pressure
25.04.2019 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht New robust device may scale up quantum tech, researchers say
25.04.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>