Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coming up in January’s Physics World . . .

04.01.2008
The magnificent but mysterious snowflake. The beautiful snowflake is much more than an attractive seasonal occurrence. In fact, understanding how a snowflake grows is a complex problem of molecular dynamics, writes Kenneth Libbrecht, Professor of Physics at the California Institute of Technology, in January’s Physics World.

Everyone knows that no two snowflakes are identical to one another. That's because they all start out as a simple hexagonal prism - the most basic form of snow crystal - but then encounter a range of atmospheric conditions as they journey down to Earth.

It was two Japanese physicists who made early strides in our understanding of snowflake formation. Ukichiro Nakaya at the University of Hokkaido in the 1930s and Takehiko Gonda in the 1970s at the Science University of Tokyo found that humidity, temperature, air pressure and other conditions are the variables that determine the shape of a snowflake.

Kenneth Libbrecht writes, “Although no two crystals end up exactly alike, the six arms of a single crystal all travel together, so they all grow in synchrony, giving each falling crystal a unique and intricate structure with a recognisable symmetry.”

The conditions in the atmosphere dictate how water molecules are transported to the crystal but, because of the infinitesimal range of conditions, that makes it hard to simulate snowflake growth and explain how particular structures are formed.

Numerical modelling is now being used to reproduce the complex structures. The work is of particular interest to metallurgists as a better understanding of snowflake structures could profoundly affect the strength and ductility of their own final materials on a micro- or even nano-scale.

Libbrecht continues, “Beyond the intrinsic scientific questions, beyond the practical applications of crystal growth, and beyond the meteorological significance of atmospheric ice, we who ponder snowflakes are motivated by a simple and essential desire to comprehend the natural world around us.”

Also in this issue:

•Funding bombshell hits UK physics
•The physics of dance

Dianne Stilwell | alfa
Further information:
http://www.physicsworld.com/

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>