Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster X-ray interferometers due to single-photon interference

19.12.2007
By means of X-ray interferometers, lengths down to the mm range can be measured with a resolution of less than one nm. The low translation velocity of the interferometers, which made their use in practice more difficult, could now be increased by a factor of 100 by exploiting the temporal correlation of singly interfering X-ray photons.

X-ray interferometers can measure lengths in the mm range with sub-nm resolution, whereby the almost perfect crystal grid of high-purity silicon is used as a length scale. The dimensions of any sub-µm-structured samples are thereby compared with the lattice parameter of silicon (?0~0.543... nm) which has been determined very precisely within the scope of the project for the new definition of the Avogadro constant. For metrological applications in connection with scanning probe microscopes, such measurements are of great importance.

Up to now, a further spreading of this method had, however, been impeded by the low translation velocities of only 1 nm/s to 10 nm/s. They are due to the limited intensity of typical laboratory X-ray sources: the necessary filtering of the periodic interference signal leads to a reduction in contrast which, in a classic measurement, requires a slow translation of the interferometer.

In a quantum-mechanical sense, however, interference occurs also in a strongly "diluted" stream of X-ray photons: Regarded as a wave packet, even single photons follow in their temporal impact on the detector the same probability which, in the case of sufficiently intense X-ray light, leads to the continuous signal whose period one wants to determine. This well-known quantum-mechanical fact is now exploited for a specific purpose: if one protocols the times at which the single photons hit the detector, one can, by means of a subsequent Fourier transform of this time series, determine very precisely the frequency at which the lattice periods were passed. At constant velocity, it is then possible to reconstruct the path information, and one obtains the same information as with the classic measurement, but in a much shorter amount of time.

Thus, translation velocities of up to 1000 nm/s could be realised. This method will in future not only be used in further improved measuring arrangements for the determination of the lattice parameter of silicon, but also for other length measurements in nanotechnology.

Erika Schow | alfa
Further information:
http://www.ptb.de

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>